Chinese Journal of Catalysis ›› 2024, Vol. 63: 202-212.DOI: 10.1016/S1872-2067(24)60074-4
• Articles • Previous Articles Next Articles
Jinlong Wanga,b,1, Dongni Liua,b,1, Mingyang Lia,b, Xiaoyi Gua,b, Shiqun Wua,b,*(), Jinlong Zhanga,b,*(
)
Received:
2024-04-26
Accepted:
2024-06-06
Online:
2024-08-18
Published:
2024-08-19
Contact:
*E-mail: wushiqun@ecust.edu.cn (S. Wu), jlzhang@ecust.edu.cn (J. Zhang).
About author:
1Contributed equally to this work.
Supported by:
Jinlong Wang, Dongni Liu, Mingyang Li, Xiaoyi Gu, Shiqun Wu, Jinlong Zhang. Boosting CO2 photoreduction by synergistic optimization of multiple processes through metal vacancy engineering[J]. Chinese Journal of Catalysis, 2024, 63: 202-212.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60074-4
Fig. 1. HRTEM images of In2O3 (a) and In2?xO3-20 (e). HAADF-STEM (b) and corresponding elemental mapping of In (c) and O (d) of In2O3. (f) HAADF-STEM and corresponding elemental mapping of In (g) and O (h) of In2?xO3-20.
Fig. 2. (a) XRD patterns of In2O3 and In2?xO3 samples. (b) Raman spectra of In2O3 and In2?xO3 samples. (c) FTIR spectra of In2O3 and In2?xO3-20. (d) In 3d high resolution XPS spectra of In2O3 and In2?xO3-20.
Fig. 3. (a) The UV-vis DRS spectra. (b) Corresponding Tauc plotsusing (αhν)1/2 (Kubelka-Munk parameter) as a function versus the photon energy. Mott-Schottky plots (c) and VB and CB edge potentials and bandgap values (d) of In2O3, In2?xO3-10, In2?xO3-20 and In2?xO3-30.
Fig. 4. (a) Time dependent conversion rates of CO2 to CO of In2O3, In2?xO3-10, In2?xO3-20, In2?xO3-30. (b) Carbon monoxide generation rate of the samples. (c) Reusability of In2?xO3-20 during the process of photocatalytic CO2 reduction. (d) Comparative testing of In2?xO3-20 under different conditions.
Fig. 5. (a) PL spectra of In2O3, In2?xO3-10, In2?xO3-20, In2?xO3-30. Time-resolved fluorescence decay spectra (b), transient photocurrent response density (c) and Nyquist plots of EIS (d) of the samples.
Fig. 7. (a) CO2 adsorption energy on different sites. (b) C=O bond length of adsorbed CO2 on different sites. (c) Bond angle of adsorbed CO2 on different sites. (d,e) Top and side view of charge density difference of In2O3 with CO2 adsorption. (f,g) Top and side view of Charge density difference of In2?xO3 with CO2 adsorption, the topological construction represents electron accumulation (purple) and depletion (green), and the isosurface level is 0.002 e ??3. (h) Gibbs free energy diagrams for the conversion of CO2 into CO on In2O3 and In2?xO3. The blue, and yellow ball represent In, O atom, respectively.
|
[1] | Lulu Sun, Shiyang Liu, Taifeng Liu, Dongqiang Lei, Nengchao Luo, Feng Wang. Engineering the coordination structure of Cu for enhanced photocatalytic production of C1 chemicals from glucose [J]. Chinese Journal of Catalysis, 2024, 63(8): 234-243. |
[2] | Ziwen Mei, Kejun Chen, Yao Tan, Qiuwen Liu, Qin Chen, Qiyou Wang, Xiqing Wang, Chao Cai, Kang Liu, Junwei Fu, Min Liu. Proton feeding from defect-rich carbon support to cobalt phthalocyanine for efficient CO2 electroreduction [J]. Chinese Journal of Catalysis, 2024, 62(7): 190-197. |
[3] | Weijie Ren, Ning Li, Qing Chang, Jie Wu, Jinlong Yang, Shengliang Hu, Zhenhui Kang. Abstracting photogenerated holes from covalent triazine frameworks through carbon dots for overall hydrogen peroxide photosynthesis [J]. Chinese Journal of Catalysis, 2024, 62(7): 178-189. |
[4] | Gaoxiong Liu, Rundong Chen, Bingquan Xia, Zhen Wu, Shantang Liu, Amin Talebian-Kiakalaieh, Jingrun Ran. Synthesis of H2O2 and high-value chemicals by covalent organic framework-based photocatalysts [J]. Chinese Journal of Catalysis, 2024, 61(6): 97-110. |
[5] | Haifang Mao, Yang Liu, Zhenmin Xu, Zhenfeng Bian. Defect-induced in situ electron-metal-support interactions on MOFs accelerating Fe(III) reduction for high-efficiency Fenton reactions [J]. Chinese Journal of Catalysis, 2024, 61(6): 247-258. |
[6] | Wei Xu, Chao Zhen, Huaze Zhu, Tingting Yao, Jianhang Qiu, Yan Liang, Shuo Bai, Chunlin Chen, Hui-Ming Cheng, Gang Liu. A Ta3N5 photoanode with few deep-level defects derived from topologic transition of ammonium tantalum oxyfluoride for ultralow-bias photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 61(6): 144-153. |
[7] | Jieting Ding, Hao-Fan Wang, Kui Shen, Xiaoming Wei, Liyu Chen, Yingwei Li. Amorphization of MOFs with rich active sites and high electronic conductivity for hydrazine oxidation [J]. Chinese Journal of Catalysis, 2024, 60(5): 351-359. |
[8] | Lele Wang, Wenyao Cheng, Jiaxin Wang, Juan Yang, Qinqin Liu. Construction of intramolecular and interfacial built-in electric field in a donor-acceptor conjugated polymers-based S-scheme heterojunction for high photocatalytic H2 generation [J]. Chinese Journal of Catalysis, 2024, 58(3): 194-205. |
[9] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
[10] | Yucheng Jin, Xiaolin Liu, Chen Qu, Changjun Li, Hailong Wang, Xiaoning Zhan, Xinyi Cao, Xiaofeng Li, Baoqiu Yu, Qi Zhang, Dongdong Qi, Jianzhuang Jiang. Perylene diimide covalent organic frameworks super-reductant for visible light-driven reduction of aryl halides [J]. Chinese Journal of Catalysis, 2024, 57(2): 171-183. |
[11] | Jin-Nian Hu, Ling-Chan Tian, Haiyan Wang, Yang Meng, Jin-Xia Liang, Chun Zhu, Jun Li. Theoretical screening of single-atom electrocatalysts of MXene-supported 3d-metals for efficient nitrogen reduction [J]. Chinese Journal of Catalysis, 2023, 52(9): 252-262. |
[12] | Mingjie Cai, Yanping Liu, Kexin Dong, Xiaobo Chen, Shijie Li. Floatable S-scheme Bi2WO6/C3N4/carbon fiber cloth composite photocatalyst for efficient water decontamination [J]. Chinese Journal of Catalysis, 2023, 52(9): 239-251. |
[13] | Lei Zhao, Zhen Zhang, Zhaozhao Zhu, Pingbo Li, Jinxia Jiang, Tingting Yang, Pei Xiong, Xuguang An, Xiaobin Niu, Xueqiang Qi, Jun Song Chen, Rui Wu. Integration of atomic Co-N5 sites with defective N-doped carbon for efficient zinc-air batteries [J]. Chinese Journal of Catalysis, 2023, 51(8): 216-224. |
[14] | Xiuli Shao, Ke Li, Jingping Li, Qiang Cheng, Guohong Wang, Kai Wang. Investigating S-scheme charge transfer pathways in NiS@Ta2O5 hybrid nanofibers for photocatalytic CO2 conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 193-203. |
[15] | Nan Yin, Weibin Chen, Yong Yang, Zheng Tang, Panjie Li, Xiaoyue Zhang, Lanqin Tang, Tianyu Wang, Yang Wang, Yong Zhou, Zhigang Zou. Tröger’s base derived 3D-porous aromatic frameworks with efficient exciton dissociation and well-defined reactive site for near-unity selectivity of CO2 photo-conversion [J]. Chinese Journal of Catalysis, 2023, 51(8): 168-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||