Chinese Journal of Catalysis ›› 2024, Vol. 65: 89-102.DOI: 10.1016/S1872-2067(24)60110-5
• Article • Previous Articles Next Articles
Ben Liua,†, Yoshinao Nakagawaa,b,*(), Mizuho Yabushitaa,b, Keiichi Tomishigea,b,c,*()
Received:
2024-06-25
Accepted:
2024-07-29
Online:
2024-10-18
Published:
2024-10-15
Contact:
*E-mail: yoshinao@erec.che.tohoku.ac.jp (Y. Nakagawa), tomishige@tohoku.ac.jp (K. Tomishige).
About author:
†Present address: Department of Chemistry, Fudan University, Shanghai 200433, China.
Ben Liu, Yoshinao Nakagawa, Mizuho Yabushita, Keiichi Tomishige. Promoting role of Ru species on Ir-Fe/BN catalyst in 1,2-diols hydrogenolysis to secondary alcohols[J]. Chinese Journal of Catalysis, 2024, 65: 89-102.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60110-5
Entry | Catalyst | Conv. /% | Selectivity/%-C | C.B./% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-BuOH | 2-BuOH | Butane | 1-PrOH | 2-PrOH | Propane | Ethane | Methane | ||||
1 a | Ir/BN | 0.6 | — | — | — | — | — | — | — | — | 102 |
2 a | 0.4 wt% FeOx/BN | <0.5 | — | — | — | — | — | — | — | — | 103 |
3 a | Ir-Fe/BN | 14.6 | 6.1 | 68.8 | 14.8 | 6.6 | 0.0 | 0.6 | 0.0 | 3.0 | 95 |
4 | Ru(0.5)-Ir-Fe/BN | 25.7 | 5.7 | 62.3 | 15.9 | 10.1 | 0.0 | 0.6 | 0.3 | 5.1 | 90 |
5 | Pt(0.5)-Ir-Fe/BN | 13.9 | 5.1 | 61.9 | 17.3 | 9.8 | 0.0 | 0.0 | 0.0 | 5.8 | 92 |
6 | Rh(0.5)-Ir-Fe/BN | 11.9 | 4.5 | 55.5 | 15.4 | 15.9 | 0.0 | 0.3 | 0.0 | 8.5 | 95 |
7 | Pd(0.5)-Ir-Fe/BN | 7.1 | 6.7 | 66.4 | 16.4 | 6.8 | 0.0 | 0.0 | 0.0 | 3.7 | 96 |
8 | Au(0.5)-Ir-Fe/BN | 9.7 | 4.9 | 70.1 | 16.3 | 5.4 | 0.0 | 0.0 | 0.0 | 3.2 | 92 |
9 | Ag(0.5)-Ir-Fe/BN | 10.8 | 5.2 | 68.5 | 17.9 | 4.6 | 0.0 | 0.8 | 0.0 | 3.0 | 92 |
10 | Ru(0.5)/BN | 41.5 | 3.2 | 5.3 | 6.8 | 32.2 | 0.0 | 5.3 | 15.3 | 31.8 | 89 |
11 | Ru(0.5)-Fe/BN | <0.5 | — | — | — | — | — | — | — | — | 100 |
12 | Ru(0.5)-Ir/BN | 3.1 | 18.2 | 37.1 | 16.0 | 12.9 | 0.0 | 3.0 | 2.8 | 10.0 | 100 |
13 b | Physical mixture | 35.3 | 5.9 | 42.0 | 15.4 | 20.6 | 0.0 | 2.7 | 1.9 | 11.5 | 92 |
Table 1 1,2-BuD hydrogenolysis over M(0.5)-Ir-Fe/BN (M (Ru, Pt, Rh, Pd, Au and Ag) = 0.5 wt%, Ir = 5 wt%, Fe = 0 or 0.4 wt%) catalysts.
Entry | Catalyst | Conv. /% | Selectivity/%-C | C.B./% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-BuOH | 2-BuOH | Butane | 1-PrOH | 2-PrOH | Propane | Ethane | Methane | ||||
1 a | Ir/BN | 0.6 | — | — | — | — | — | — | — | — | 102 |
2 a | 0.4 wt% FeOx/BN | <0.5 | — | — | — | — | — | — | — | — | 103 |
3 a | Ir-Fe/BN | 14.6 | 6.1 | 68.8 | 14.8 | 6.6 | 0.0 | 0.6 | 0.0 | 3.0 | 95 |
4 | Ru(0.5)-Ir-Fe/BN | 25.7 | 5.7 | 62.3 | 15.9 | 10.1 | 0.0 | 0.6 | 0.3 | 5.1 | 90 |
5 | Pt(0.5)-Ir-Fe/BN | 13.9 | 5.1 | 61.9 | 17.3 | 9.8 | 0.0 | 0.0 | 0.0 | 5.8 | 92 |
6 | Rh(0.5)-Ir-Fe/BN | 11.9 | 4.5 | 55.5 | 15.4 | 15.9 | 0.0 | 0.3 | 0.0 | 8.5 | 95 |
7 | Pd(0.5)-Ir-Fe/BN | 7.1 | 6.7 | 66.4 | 16.4 | 6.8 | 0.0 | 0.0 | 0.0 | 3.7 | 96 |
8 | Au(0.5)-Ir-Fe/BN | 9.7 | 4.9 | 70.1 | 16.3 | 5.4 | 0.0 | 0.0 | 0.0 | 3.2 | 92 |
9 | Ag(0.5)-Ir-Fe/BN | 10.8 | 5.2 | 68.5 | 17.9 | 4.6 | 0.0 | 0.8 | 0.0 | 3.0 | 92 |
10 | Ru(0.5)/BN | 41.5 | 3.2 | 5.3 | 6.8 | 32.2 | 0.0 | 5.3 | 15.3 | 31.8 | 89 |
11 | Ru(0.5)-Fe/BN | <0.5 | — | — | — | — | — | — | — | — | 100 |
12 | Ru(0.5)-Ir/BN | 3.1 | 18.2 | 37.1 | 16.0 | 12.9 | 0.0 | 3.0 | 2.8 | 10.0 | 100 |
13 b | Physical mixture | 35.3 | 5.9 | 42.0 | 15.4 | 20.6 | 0.0 | 2.7 | 1.9 | 11.5 | 92 |
Entry | Catalyst | Conv./% | Selectivity/%-C | C.B./% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-BuOH | 2-BuOH | Butane | 1-PrOH | 2-PrOH | Propane | Ethane | Methane | ||||
1 a | Ir-Fe/BN | 14.6 | 6.1 | 68.8 | 14.8 | 6.6 | 0.0 | 0.6 | 0.0 | 3.0 | 95 |
2 | Ru(0.1)-Ir-Fe/BN | 15.7 | 5.0 | 66.7 | 16.5 | 7.5 | 0.0 | 0.3 | 0.0 | 3.9 | 94 |
3 | Ru(0.3)-Ir-Fe/BN | 18.9 | 5.4 | 66.0 | 13.2 | 10.7 | 0.0 | 0.5 | 0.0 | 4.3 | 92 |
4 | Ru(0.5)-Ir-Fe/BN | 25.7 | 5.7 | 62.3 | 15.9 | 10.1 | 0.0 | 0.6 | 0.3 | 5.1 | 90 |
5 b | Ru(0.5)-Ir-Fe/BN | 23.3 | 5.4 | 58.5 | 19.4 | 10.2 | 0.0 | 0.7 | 0.5 | 5.2 | 94 |
6 c | Ru(2)-Ir(20)-Fe(1.4)/BN | 30.1 | 7.3 | 68.5 | 10.4 | 9.7 | 0.0 | 0.6 | 0.3 | 3.2 | 91 |
7 | Ru(1)-Ir-Fe/BN | 28.3 | 5.3 | 55.7 | 15.6 | 14.3 | 0.0 | 1.2 | 0.6 | 7.3 | 93 |
8 | Ru(1.5)-Ir-Fe/BN | 48.2 | 5.3 | 50.4 | 15.5 | 17.1 | 0.0 | 2.0 | 1.1 | 8.6 | 93 |
9 | Ru(2)-Ir-Fe/BN | 68.4 | 4.4 | 40.5 | 17.0 | 18.8 | 0.0 | 4.2 | 2.9 | 12.2 | 87 |
10 d | Ru(3)-Ir-Fe/BN | 29.8 | 6.1 | 36.2 | 14.1 | 25.9 | 0.0 | 4.1 | 3.0 | 10.7 | 101 |
11 | Ru(3)-Ir-Fe/BN | 95.3 | 2.4 | 28.2 | 18.9 | 13.6 | 0.0 | 10.5 | 8.2 | 18.4 | 88 |
Table 2 1,2-BuD hydrogenolysis over Ru(y)-Ir-Fe/BN (Ru = y (0?3) wt%, Ir = 5 wt%, Fe = 0.4 wt%) catalysts.
Entry | Catalyst | Conv./% | Selectivity/%-C | C.B./% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-BuOH | 2-BuOH | Butane | 1-PrOH | 2-PrOH | Propane | Ethane | Methane | ||||
1 a | Ir-Fe/BN | 14.6 | 6.1 | 68.8 | 14.8 | 6.6 | 0.0 | 0.6 | 0.0 | 3.0 | 95 |
2 | Ru(0.1)-Ir-Fe/BN | 15.7 | 5.0 | 66.7 | 16.5 | 7.5 | 0.0 | 0.3 | 0.0 | 3.9 | 94 |
3 | Ru(0.3)-Ir-Fe/BN | 18.9 | 5.4 | 66.0 | 13.2 | 10.7 | 0.0 | 0.5 | 0.0 | 4.3 | 92 |
4 | Ru(0.5)-Ir-Fe/BN | 25.7 | 5.7 | 62.3 | 15.9 | 10.1 | 0.0 | 0.6 | 0.3 | 5.1 | 90 |
5 b | Ru(0.5)-Ir-Fe/BN | 23.3 | 5.4 | 58.5 | 19.4 | 10.2 | 0.0 | 0.7 | 0.5 | 5.2 | 94 |
6 c | Ru(2)-Ir(20)-Fe(1.4)/BN | 30.1 | 7.3 | 68.5 | 10.4 | 9.7 | 0.0 | 0.6 | 0.3 | 3.2 | 91 |
7 | Ru(1)-Ir-Fe/BN | 28.3 | 5.3 | 55.7 | 15.6 | 14.3 | 0.0 | 1.2 | 0.6 | 7.3 | 93 |
8 | Ru(1.5)-Ir-Fe/BN | 48.2 | 5.3 | 50.4 | 15.5 | 17.1 | 0.0 | 2.0 | 1.1 | 8.6 | 93 |
9 | Ru(2)-Ir-Fe/BN | 68.4 | 4.4 | 40.5 | 17.0 | 18.8 | 0.0 | 4.2 | 2.9 | 12.2 | 87 |
10 d | Ru(3)-Ir-Fe/BN | 29.8 | 6.1 | 36.2 | 14.1 | 25.9 | 0.0 | 4.1 | 3.0 | 10.7 | 101 |
11 | Ru(3)-Ir-Fe/BN | 95.3 | 2.4 | 28.2 | 18.9 | 13.6 | 0.0 | 10.5 | 8.2 | 18.4 | 88 |
Fig. 1. Reusability of Ru(0.5)-Ir-Fe/BN (Ru = 0.5 wt%, Ir = 5 wt%, Fe = 0.4 wt%) catalyst in 1,2-BuD hydrogenolysis. Details were described in Table S4. Reaction conditions: 1,2-BuD = 0.5 g, H2O = 4 g, mcat = 0.2 g, P(H2) = 8 MPa, T = 453 K, t = 24 h. a Reuse method 1: after reaction, the catalyst was collected by centrifugation (6000 r min?1, 5 min), washed with water and dried at 383 K for 12 h. b Reuse method 2: after reaction, the catalyst was collected by centrifugation (6000 r min?1, 5 min), washed with water, dried at 383 K for 12 h, and then calcined at 573 K for 1 h.
Fig. 2. Time course of 1,2-BuD hydrogenolysis over Ru(0.5)-Ir-Fe/BN (Ru = 0.5 wt%, Ir = 5 wt%, Fe = 0.4 wt%) catalyst. Details were described in Table S5. Reaction conditions: 1,2-BuD = 0.5 g, H2O = 4 g, mcat = 0.2 g, P(H2) = 8 MPa, T = 453 K.
Substrate | Catalyst | Conv./% | Product (Selectivity/%-C) | C.B./% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1,2-PrD) | Ir-Fe/BN | 12.6 | (60.8) | (15.0) | (11.6) | others (12.6) | 101 | |||||
Ru(0.5)-Ir-Fe/BN | 24.1 | (56.9) | (13.4) | (11.0) | others (18.7) | 97 | ||||||
(Glycerol) | Ir-Fe/BN | 21.1 | (88.0) | (0.6) | (1.8) | others (9.6) | 100 | |||||
Ru(0.5)-Ir-Fe/BN | 29.0 | (68.7) | (1.0) | (0.9) | others (29.4) | 90 | ||||||
(1,2-BuD) | Ir-Fe/BN | 14.6 | (68.8) | (6.1) | (14.8) | others (10.3) | 95 | |||||
Ru(0.5)-Ir-Fe/BN | 25.7 | (62.3) | (5.7) | (15.9) | others (16.1) | 90 | ||||||
(1,3-BuD) | Ir-Fe/BN | 43.4 | (84.5) | (7.8) | (0.8) | others (6.9) | 90 | |||||
Ru(0.5)-Ir-Fe/BN | 54.0 | (80.1) | (6.8) | (0.8) | others (12.3) | 90 |
Table 3 Hydrogenolysis of various alcohols over Ru(0.5)-Ir-Fe/BN and Ir-Fe/BN catalysts.
Substrate | Catalyst | Conv./% | Product (Selectivity/%-C) | C.B./% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1,2-PrD) | Ir-Fe/BN | 12.6 | (60.8) | (15.0) | (11.6) | others (12.6) | 101 | |||||
Ru(0.5)-Ir-Fe/BN | 24.1 | (56.9) | (13.4) | (11.0) | others (18.7) | 97 | ||||||
(Glycerol) | Ir-Fe/BN | 21.1 | (88.0) | (0.6) | (1.8) | others (9.6) | 100 | |||||
Ru(0.5)-Ir-Fe/BN | 29.0 | (68.7) | (1.0) | (0.9) | others (29.4) | 90 | ||||||
(1,2-BuD) | Ir-Fe/BN | 14.6 | (68.8) | (6.1) | (14.8) | others (10.3) | 95 | |||||
Ru(0.5)-Ir-Fe/BN | 25.7 | (62.3) | (5.7) | (15.9) | others (16.1) | 90 | ||||||
(1,3-BuD) | Ir-Fe/BN | 43.4 | (84.5) | (7.8) | (0.8) | others (6.9) | 90 | |||||
Ru(0.5)-Ir-Fe/BN | 54.0 | (80.1) | (6.8) | (0.8) | others (12.3) | 90 |
Fig. 3. XRD patterns (30o?50o) of monometallic catalysts and Ru(y)-Ir-Fe/BN (Ru = y (0?3) wt%, Ir = 5 wt%, Fe = 0 or 0.4 wt%) catalysts after reaction. (a) FeOx/BN (Fe = 0.4 wt%); (b) Ir/BN; (c) Ru(0.5)/BN; (d) Ir-Fe/BN; (e) Ru(0.5)-Ir/BN; (f) Ru(0.3)-Ir-Fe/BN; (g) Ru(0.5)-Ir-Fe/BN; (h) Ru(1.5)-Ir-Fe/BN; (i) Ru(3)-Ir-Fe/BN; (j) BN. Reaction conditions: 1,2-BuD = 0.5 g, H2O = 4 g, mcat = 0.2 g, P(H2) = 8 MPa, T = 453 K, t = 24 h. a The crystallite size was calculated based on the Ru metal at about 44o (fitting result was shown in Fig. S3), and the size of Ir species was not calculated due to the low intensity. XRD patterns (30°?75°) of catalysts are provided in Fig. S2.
Entry | Catalyst | XRD d/nma | TEM d/nmb | DXRD /%a | DCO /%c | Valence of Rud (XANES) | Valence of Fed (XANES) | Valence of Ird (XANES) | Ru0:Ir0:Fe0 (XANES) | Ru:Ir:Fe (nominal) | Ru:Ir:Fee (XPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Ir/BN | 3.1 | n.d. | 24 | 9 | — | — | 0.9 | — | — | — |
2 | 0.4 wt% FeOx/BN | — | n.d. | — | 0 | — | 2.9 | — | — | — | — |
3 | Ru(0.5)/BN | — | n.d. | — | 2 | 0.3 | — | — | — | — | — |
4 | Ir-Fe/BN | 2.6 | 1.7 | 42 | 6 | — | 0.7 | 0.6 | 0:1:0.2 | 0:1:0.25 | 0:1:0.4 |
5 | Ru(0.5)-Ir/BN | 2.8 | 1.8 | — | 9 | 0 | — | 0.6 | 0.2:1:0 | 0.19:1:0 | 0.06:1:0 |
6 | Ru(0.5)-Ir-Fe/BN | 2.5 (2.0f) | 2.0 | 44 (55f) | 5 (8g) | 0 | 0.7 | 0.6 | 0.2:1:0.2 | 0.19:1:0.25 | 0.05:1:0.3 |
7 | Ru(1.5)-Ir-Fe/BN | n.d. | n.d. | n.d. | 5 | n.d. | n.d. | n.d. | n.d. | 0.57:1:0.25 | n.d. |
8 | Ru(3)-Ir-Fe/BN | 2.9 | 2.4 | 38 | 5 | 0 | 0.4 | 0.7 | 1.3:1:0.2 | 1.1:1:0.25 | n.d. |
Table 4 Summary of characterization results.
Entry | Catalyst | XRD d/nma | TEM d/nmb | DXRD /%a | DCO /%c | Valence of Rud (XANES) | Valence of Fed (XANES) | Valence of Ird (XANES) | Ru0:Ir0:Fe0 (XANES) | Ru:Ir:Fe (nominal) | Ru:Ir:Fee (XPS) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Ir/BN | 3.1 | n.d. | 24 | 9 | — | — | 0.9 | — | — | — |
2 | 0.4 wt% FeOx/BN | — | n.d. | — | 0 | — | 2.9 | — | — | — | — |
3 | Ru(0.5)/BN | — | n.d. | — | 2 | 0.3 | — | — | — | — | — |
4 | Ir-Fe/BN | 2.6 | 1.7 | 42 | 6 | — | 0.7 | 0.6 | 0:1:0.2 | 0:1:0.25 | 0:1:0.4 |
5 | Ru(0.5)-Ir/BN | 2.8 | 1.8 | — | 9 | 0 | — | 0.6 | 0.2:1:0 | 0.19:1:0 | 0.06:1:0 |
6 | Ru(0.5)-Ir-Fe/BN | 2.5 (2.0f) | 2.0 | 44 (55f) | 5 (8g) | 0 | 0.7 | 0.6 | 0.2:1:0.2 | 0.19:1:0.25 | 0.05:1:0.3 |
7 | Ru(1.5)-Ir-Fe/BN | n.d. | n.d. | n.d. | 5 | n.d. | n.d. | n.d. | n.d. | 0.57:1:0.25 | n.d. |
8 | Ru(3)-Ir-Fe/BN | 2.9 | 2.4 | 38 | 5 | 0 | 0.4 | 0.7 | 1.3:1:0.2 | 1.1:1:0.25 | n.d. |
Fig. 4. TEM-EDX analysis of used catalysts (Ru = 0.5 wt% or 3 wt%, Ir = 0 or 5 wt%, Fe = 0 or 0.4 wt%). (A, A’) Ru(0.5)/BN; (B, B’’) Ru(0.5)-Ir/BN; (C, C’’) Ru(0.5)-Ir-Fe/BN; (D, D’’) Ru(3)-Ir-Fe/BN. Reaction conditions: 1,2-BuD = 0.5 g, H2O = 4 g, mcat = 0.2 g, P(H2) = 8 MPa, T = 453 K, t = 24 h.
Sample (loading in wt%) | Edge | Shells | CNa | R/10-1 nmb | σ/10-1 nmc |
---|---|---|---|---|---|
Ru(0.5)/BN | Ru K | Ru-Ru | 9.8 | 2.68 | 0.070 |
Ru-O | 2.6 | 2.04 | 0.060 | ||
Ru(0.5)- Ir(5)/BN | Ru K | Ru-Ir | 6.9 | 2.70 | 0.073 |
Ru-Ru | 0.8 | 2.68 | 0.067 | ||
Ru-B | 2.6 | 2.23 | 0.062 | ||
Ir L3 | Ir-Ir | 7.3 | 2.75 | 0.066 | |
Ir-Ru | 1.3d | 2.70d | 0.072 | ||
Ru(0.5)-Ir(5)- Fe(0.4)/BN | Ru K | Ru-Ir | 6.8 | 2.68 | 0.073 |
Ru-Ru | 1.6 | 2.74 | 0.061 | ||
Ru-B | 1.9 | 2.17 | 0.060 | ||
Fe K | Fe-O | 0.7 | 1.95 | 0.090 | |
Fe-Ir | 6.0 | 2.62 | 0.089 | ||
Ir L3 | Ir-Fe | 1.5d | 2.62d | 0.083 | |
Ir-Ru | 1.3d | 2.68d | 0.076 | ||
Ir-Ir | 6.2 | 2.74 | 0.067 | ||
Ru(3)-Ir(5)- Fe(0.4)/BN | Ru K | Ru-Ru | 6.2 | 2.66 | 0.074 |
Ru-Ir | 4.0 | 2.68 | 0.076 | ||
Ru-Fe | 0.4 | 2.60 | 0.068 | ||
Fe K | Fe-Fe | 0.8 | 2.55 | 0.060 | |
Fe-Ru | 1.9 | 2.60 | 0.080 | ||
Fe-Ir | 3.5 | 2.63 | 0.083 | ||
Ir L3 | Ir-Fe | 0.9d | 2.63d | 0.103 | |
Ir-Ru | 4.4 | 2.68 | 0.071 | ||
Ir-Ir | 4.1 | 2.74 | 0.065 |
Table 5 Summary of curve fitting results of EXAFS for used catalysts.
Sample (loading in wt%) | Edge | Shells | CNa | R/10-1 nmb | σ/10-1 nmc |
---|---|---|---|---|---|
Ru(0.5)/BN | Ru K | Ru-Ru | 9.8 | 2.68 | 0.070 |
Ru-O | 2.6 | 2.04 | 0.060 | ||
Ru(0.5)- Ir(5)/BN | Ru K | Ru-Ir | 6.9 | 2.70 | 0.073 |
Ru-Ru | 0.8 | 2.68 | 0.067 | ||
Ru-B | 2.6 | 2.23 | 0.062 | ||
Ir L3 | Ir-Ir | 7.3 | 2.75 | 0.066 | |
Ir-Ru | 1.3d | 2.70d | 0.072 | ||
Ru(0.5)-Ir(5)- Fe(0.4)/BN | Ru K | Ru-Ir | 6.8 | 2.68 | 0.073 |
Ru-Ru | 1.6 | 2.74 | 0.061 | ||
Ru-B | 1.9 | 2.17 | 0.060 | ||
Fe K | Fe-O | 0.7 | 1.95 | 0.090 | |
Fe-Ir | 6.0 | 2.62 | 0.089 | ||
Ir L3 | Ir-Fe | 1.5d | 2.62d | 0.083 | |
Ir-Ru | 1.3d | 2.68d | 0.076 | ||
Ir-Ir | 6.2 | 2.74 | 0.067 | ||
Ru(3)-Ir(5)- Fe(0.4)/BN | Ru K | Ru-Ru | 6.2 | 2.66 | 0.074 |
Ru-Ir | 4.0 | 2.68 | 0.076 | ||
Ru-Fe | 0.4 | 2.60 | 0.068 | ||
Fe K | Fe-Fe | 0.8 | 2.55 | 0.060 | |
Fe-Ru | 1.9 | 2.60 | 0.080 | ||
Fe-Ir | 3.5 | 2.63 | 0.083 | ||
Ir L3 | Ir-Fe | 0.9d | 2.63d | 0.103 | |
Ir-Ru | 4.4 | 2.68 | 0.071 | ||
Ir-Ir | 4.1 | 2.74 | 0.065 |
Fig. 5. H2-TPR profiles of monometallic catalysts and Ru(y)-Ir-Fe/BN (Ru = y (0?3) wt%, Ir = 5 wt%, Fe = 0 or 0.4 wt%) catalysts. (a) Ru(0.5)/BN; (b) Ir/BN; (c) Ru(0.5)-Ir/BN; (d) Ir-Fe/BN; (e) Ru(0.5)-Ir-Fe/BN; (f) Ru(1.5)-Ir-Fe/BN; (g) Ru(3)-Ir-Fe/BN.
Fig. 6. DRIFT spectra of CO adsorbed on catalysts (Ru = 0?3 wt%, Ir = 0 or 5 wt%, Fe = 0 or 0.4 wt%) after reduction at 473 K for 1 h. n.d.: no data. Y-axis is normalized by corresponding CO adsorption amount except Ru/BN catalysts. a Dispersion (%) determined by the molar ratio of chemisorbed CO to total noble metal; measured after reduction under a H2 flow at 473 K for 1 h in a gas phase (see Table 4).
Fig. 7. Proposed structure of Ru(0.5)-Ir-Fe/BN catalyst during reaction and possible mechanisms. Note: the partial covering of the alloy particles with BN may occur, especially in the dry catalyst.
|
[1] | Lujie Liu, Ben Liu, Yoshinao Nakagawa, Sibao Liu, Liang Wang, Mizuho Yabushita, Keiichi Tomishige. Recent progress on bimetallic catalysts for the production of fuels and chemicals from biomass and plastics by hydrodeoxygenation [J]. Chinese Journal of Catalysis, 2024, 62(7): 1-31. |
[2] | Yan Zeng, Hui Wang, Huiru Yang, Chao Juan, Dan Li, Xiaodong Wen, Fan Zhang, Ji-Jun Zou, Chong Peng, Changwei Hu. Ni nanoparticle coupled surface oxygen vacancies for efficient synergistic conversion of palmitic acid into alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 229-242. |
[3] | Hao Tian, Bingjun Xu. Oxidative co-dehydrogenation of ethane and propane over h-BN as an effective means for C-H bond activation and mechanistic investigations [J]. Chinese Journal of Catalysis, 2022, 43(8): 2173-2182. |
[4] | Shi-Qun Cheng, Xue-Fei Weng, Qing-Nan Wang, Bai-Chuan Zhou, Wen-Cui Li, Ming-Run Li, Lei He, Dong-Qi Wang, An-Hui Lu. Defect-rich BN-supported Cu with superior dispersion for ethanol conversion to aldehyde and hydrogen [J]. Chinese Journal of Catalysis, 2022, 43(4): 1092-1100. |
[5] | Fan Wu, Lei He, Wen-Cui Li, Rao Lu, Yang Wang, An-Hui Lu. Highly dispersed boron-nitride/CuOx-supported Au nanoparticles for catalytic CO oxidation at low temperatures [J]. Chinese Journal of Catalysis, 2021, 42(3): 388-395. |
[6] | Dongdong Wang, Wanbing Gong, Jifang Zhang, Miaomiao Han, Chun Chen, Yunxia Zhang, Guozhong Wang, Haimin Zhang, Huijun Zhao. Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water [J]. Chinese Journal of Catalysis, 2021, 42(11): 2027-2037. |
[7] | Arif Ali, Chen Zhao. Ru nanoparticles supported on hydrophilic mesoporous carbon catalyzed low-temperature hydrodeoxygenation of microalgae oil to alkanes at aqueous-phase [J]. Chinese Journal of Catalysis, 2020, 41(8): 1174-1185. |
[8] | Xiaoying Sun, Meijun Liu, Yaoyao Huang, Bo Li, Zhen Zhao. Electronic interaction between single Pt atom and vacancies on boron nitride nanosheets and its influence on the catalytic performance in the direct dehydrogenation of propane [J]. Chinese Journal of Catalysis, 2019, 40(6): 819-825. |
[9] | Nhung N. Duong, Darius Aruho, Bin Wang, Daniel E. Resasco. Hydrodeoxygenation of anisole over different Rh surfaces [J]. Chinese Journal of Catalysis, 2019, 40(11): 1721-1730. |
[10] | Lei Shi, Dongqi Wang, Anhui Lu. A viewpoint on catalytic origin of boron nitride in oxidative dehydrogenation of light alkanes [J]. Chinese Journal of Catalysis, 2018, 39(5): 908-913. |
[11] | Lei Shi, Bing Yan, Dan Shao, Fan Jiang, Dongqi Wang, An-Hui Lu. Selective oxidative dehydrogenation of ethane to ethylene over a hydroxylated boron nitride catalyst [J]. Chinese Journal of Catalysis, 2017, 38(2): 389-395. |
[12] | Xiaofei Wang, Jixiang Chen. Effects of indium on Ni/SiO2 catalytic performance in hydrodeoxygenation of anisole as model bio-oil compound:Suppression of benzene ring hydrogenation and C-C bond hydrogenolysis [J]. Chinese Journal of Catalysis, 2017, 38(11): 1818-1830. |
[13] | Qiying Liu, Hualiang Zuo, Qi Zhang, Tiejun Wang, Longlong Ma. Hydrodeoxygenation of palm oil to hydrocarbon fuels over Ni/SAPO-11 catalysts [J]. Chinese Journal of Catalysis, 2014, 35(5): 748-756. |
[14] | Xinghua Zhang, Qi Zhang, Lungang Chen, Ying Xu, Tiejun Wang, Longlong Ma. Effect of calcination temperature of Ni/SiO2-ZrO2 catalyst on its hydrodeoxygenation of guaiacol [J]. Chinese Journal of Catalysis, 2014, 35(3): 302-309. |
[15] | YANG Xiao-Long, TANG Li-Ping, XIA Chun-Gu, XIONG Xu-Mao, MU Xin-Yuan, HU Bin. Effect of MgO/h-BN Composite Support on Catalytic Activity of Ba-Ru/MgO/h-BN for Ammonia Synthesis [J]. Chinese Journal of Catalysis, 2012, 33(3): 447-453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||