Chinese Journal of Catalysis ›› 2024, Vol. 65: 40-69.DOI: 10.1016/S1872-2067(24)60094-X
• Review • Previous Articles Next Articles
Yingbin Zhenga,b,1, Xinbao Zhanga,1, Junjie Lia, Jie Ana, Longya Xua, Xiujie Lia,*(), Xiangxue Zhua,*()
Received:
2024-06-03
Accepted:
2024-07-09
Online:
2024-10-18
Published:
2024-10-15
Contact:
*E-mail: xiujieli@dicp.ac.cn (X. Li), zhuxx@dicp.ac.cn (X. Zhu).
About author:
Xiujie Li, Professor at the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS). Prof. Li received her Ph.D. in Physical Chemistry from DICP, CAS in 2008 and has been working in the Division of Fossil Conversion and Applied Catalysis at DICP since then. Her research interests primarily focus on the synthesis and applications of zeolites for heterogeneous catalysis and VOCs removal, CO2-assisted oxidative dehydrogenation of light alkanes, and developing new routes for value-added olefin on basis of fossil energy and renewable energy. She has published more than 80 peer-reviewed papers.Supported by:
Yingbin Zheng, Xinbao Zhang, Junjie Li, Jie An, Longya Xu, Xiujie Li, Xiangxue Zhu. CO2-assisted oxidation dehydrogenation of light alkanes over metal-based heterogeneous catalysts[J]. Chinese Journal of Catalysis, 2024, 65: 40-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60094-X
Chemical equation | Reaction type | ||
---|---|---|---|
1-1 | C2H6 → C2H4 + H2 | 137 | DDH |
1-2 | C3H8 → C3H6 + H2 | 125 | |
1-3 | i-C4H10 → i-C4H8 + H2 | 138 | |
1-4 | n-C4H10 → n-C4H8 + H2 | 148 | |
1-5 | n-C4H10 → cis-2-C4H8 + H2 | 142 | |
1-6 | n-C4H10 → trans-2-C4H8 + H2 | 138 | |
1-7 | n-C4H10 → 1,3-C4H6 + 2H2 | 258 | |
1-8 | n-C4H8 → 1,3-C4H6 + H2 | 110 | |
2-1 | 2C2H6 + O2 → 2C2H4 + 2H2O | ‒209 | O2-ODH |
2-2 | 2C3H8 + O2 → 2C3H6 + 2H2O | ‒234 | |
2-3 | 2n-C4H10 + O2 → 2 n-C4H8 + 2H2O | ‒187 | |
2-4 | 2n-C4H8 + O2 → 2 1,3-C4H6 + 2H2O | ‒264 | |
3-1 | C2H6 + CO2 → C2H4 + CO + H2O | 178 | CO2-ODH |
3-2 | C3H8 + CO2 → C3H6 + CO + H2O | 166 | |
3-3 | n-C4H10 + CO2 → n-C4H8 + CO + H2O | 189 | |
3-4 | n-C4H10 + 2CO2 → 1,3-C4H6 + 2CO + 2H2O | 399 | |
4 | H2 + CO2 → CO + H2O | 41 | RWGS |
5 | C + CO2 → 2CO | 172 | Reverse Boudouard |
6-1 | C2H6 + 2CO2 → 4CO + 3H2 | 430 | Dry-reforming |
6-2 | C3H8 + 3CO2 → 6CO + 4H2 | 637 | |
6-3 | n-C4H10 + 4CO2 → 8CO + 5H2 | 838 |
Table 1 Reactions involved in alkanes dehydrogenation and corresponding changes in enthalpy energy (calculated by the HSC Chemistry 6.0 software).
Chemical equation | Reaction type | ||
---|---|---|---|
1-1 | C2H6 → C2H4 + H2 | 137 | DDH |
1-2 | C3H8 → C3H6 + H2 | 125 | |
1-3 | i-C4H10 → i-C4H8 + H2 | 138 | |
1-4 | n-C4H10 → n-C4H8 + H2 | 148 | |
1-5 | n-C4H10 → cis-2-C4H8 + H2 | 142 | |
1-6 | n-C4H10 → trans-2-C4H8 + H2 | 138 | |
1-7 | n-C4H10 → 1,3-C4H6 + 2H2 | 258 | |
1-8 | n-C4H8 → 1,3-C4H6 + H2 | 110 | |
2-1 | 2C2H6 + O2 → 2C2H4 + 2H2O | ‒209 | O2-ODH |
2-2 | 2C3H8 + O2 → 2C3H6 + 2H2O | ‒234 | |
2-3 | 2n-C4H10 + O2 → 2 n-C4H8 + 2H2O | ‒187 | |
2-4 | 2n-C4H8 + O2 → 2 1,3-C4H6 + 2H2O | ‒264 | |
3-1 | C2H6 + CO2 → C2H4 + CO + H2O | 178 | CO2-ODH |
3-2 | C3H8 + CO2 → C3H6 + CO + H2O | 166 | |
3-3 | n-C4H10 + CO2 → n-C4H8 + CO + H2O | 189 | |
3-4 | n-C4H10 + 2CO2 → 1,3-C4H6 + 2CO + 2H2O | 399 | |
4 | H2 + CO2 → CO + H2O | 41 | RWGS |
5 | C + CO2 → 2CO | 172 | Reverse Boudouard |
6-1 | C2H6 + 2CO2 → 4CO + 3H2 | 430 | Dry-reforming |
6-2 | C3H8 + 3CO2 → 6CO + 4H2 | 637 | |
6-3 | n-C4H10 + 4CO2 → 8CO + 5H2 | 838 |
Fig. 2. Equilibrium conversions of ethane (a) and propane (b) in direct dehydrogenation as a function of temperature under different pressures. (c) Equilibrium conversions of ethane in direct dehydrogenation of ethane (DDHE), CO2-oxidative dehydrogenation of ethane (CO2-ODHE) and dry-reforming of ethane (DRE) as a function of temperature. (d) Equilibrium conversion of propane in CO2-oxidative dehydrogenation of propane (CO2-ODHP) as a function of temperature under different CO2/C3H8 feeding ratios. Equilibrium reactant and product amounts as a function of temperature under CO2/C2H6 = 1 (e) and CO2/C3H8 = 1 (f) at 1 atm (calculated by the HSC Chemistry 6.0 software).
Fig. 4. (a?c) C2?C4 and CO2 conversion plot for various metal-based catalysts in CO2-ODH reactions (collected from Table 2?4). (d) The common elements used as active site and support for CO2-ODH reaction, respectively. (e) The types of metal-based catalysts for CO2-ODH reactions.
Fig. 5. Interfacial active sites (a) and general descriptors (b) for CO2-assisted selective C?H/C?C bond scission in ethane. Copyrights: (a) adopted with permission from Ref. [44]. Copyright 2020, Elsevier. (b) Adopted with permission from Ref. [48]. Copyright 2022, American Chemical Society.
Fig. 6. (a) The relationship of CO2-ODH activity with the metal species polymerization. The approaches for improving Cr species dispersion via support modifications: compositions (b); pore sizes (c); the locations (d) and numbers of silanol groups (e); confinement (f). Copyrights: (a) adopted with permission from Ref. [61]. Copyright 2020, Elsevier. (b) adopted with permission from Ref. [62]. Copyright 2019, Elsevier. (c) adopted with permission from Ref. [63]. Copyright 2021, Elsevier. (d) adopted with permission from Ref. [64]. Copyright 2017, Elsevier. (e) adopted with permission from Ref. [65]. Copyright 2016, Elsevier. (f) adopted with permission from Ref. [66]. Copyright 2019, Elsevier.
Fig. 7. The schematic diagram (a), in situ HAADF-STEM images (b), and quasi-in situ 57Fe Mo?ssbauer spectra (c) of Fe/3Mg7Al in different ethane dehydrogenation reaction periods. Adopted with permission from Ref. [82]. Copyright 2023, American Chemical Society.
Fig. 8. The possible reaction mechanism over the Co/S-1 catalyst under dehydrogenation reactions with different feeding CO2/C2H6 ratios. Adopted with permission from Ref. [97]. Copyright 2024, American Chemical Society.
Fig. 9. Various active sites of Co species for alkanes dehydrogenation, wherein the easily reductive large particles favor the scission of C?C bond. (a) Ultrasmall Co0 particle; (b) isolated tetrahedral Co2+ species; (c) unsaturated Co species; (d) CoO clusters. Copyrights: (a) was adopted with permission from Ref. [108]. Copyright 2020, Elsevier. (b) Adopted with permission from Ref. [101]. Copyright 2023, Elsevier. (c) Adopted with permission from Ref. [110]. Copyright 2024, American Chemical Society. (d) Adopted with permission from Ref. [99]. Copyright 2023, American Chemical Society.
Catalyst | Feed ratio (C2:CO2:inert gas) | Temp. (°C) | WHSV (L/g/h) | XC2 (%) | SC2 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
1.0% Pd(1:0)/CeO2 | 1:01:02 | 600 | 24 | 4.6 | 59.6 | 8.6 | [ |
1.0% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 6.1 | 86.4 | 7.1 | |
1.0% PdFe(1:9)/CeO2 | 1:01:02 | 600 | 24 | 6.6 | 85.8 | 8.3 | |
0.5% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 4.9 | 87.2 | 6.7 | |
0.1% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 3.2 | 93.1 | 3.7 | |
1.4% Fe(0:3)/CeO2 | 1:01:02 | 600 | 24 | 0.9 | 40 | 2.5 | |
1%PdCo3/CeO2 | 1:01:02 | 600 | 24 | 8.3 | 10.6 | 21.6 | [ |
1%PdIn3/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 89 | 4.5 | |
1%PdGa3/CeO2 | 1:01:02 | 600 | 24 | 0.4 | 95.5 | 0.8 | |
1%PdSn3/CeO2 | 1:01:02 | 600 | 24 | 2.8 | 88.9 | 2.9 | |
1%PdFe3/CeO2 | 1:01:02 | 600 | 24 | 4.9 | 81.7 | 5.7 | |
1%PdAg3/CeO2 | 1:01:02 | 600 | 24 | 3.6 | 65.5 | 5.6 | |
1%PdAu3/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 56.9 | 6.7 | |
1%PdCu3/CeO2 | 1:01:02 | 600 | 24 | 2.4 | 39.4 | 5.3 | |
1%PdNi3/CeO2 | 1:01:02 | 600 | 24 | 9.4 | 5.7 | 23.4 | |
1%PdPt3/CeO2 | 1:01:02 | 600 | 24 | 16.1 | 2.2 | 37.8 | |
1%PdRh3/CeO2 | 1:01:02 | 600 | 24 | 27.7 | 0.8 | 56.1 | |
1%PdRu3/CeO2 | 1:01:02 | 600 | 24 | 31.3 | 0.3 | 63.4 | |
1%PdIr3/CeO2 | 1:01:02 | 600 | 24 | 33.5 | 0.7 | 61.1 | |
Pd-Fe6/CeO2 | 1:02:03 | 650 | 18 | 9.9 | 80.4 | 9.3 | [ |
Pd-Co6/CeO2 | 1:02:03 | 650 | 18 | 24.9 | 4.4 | 34.2 | |
Pd-Ni9/CeO2 | 1:02:03 | 650 | 18 | 74.9 | 2 | 62.2 | |
Au/CeR | 0.136365741 | 650 | 9 | 16.9 | 97.6 | — | [ |
Au/Ce0.9Y0.1 | 0.136365741 | 650 | 9 | 20.9 | 99.5 | — | [ |
PtCe@MZ | 2:01:17 | 600 | 15 | 34 | 94 | 35* | [ |
1Pt@ZNS | 2:01:07 | 600 | 15 | 9.5 | 54 | 48* | [ |
1Pt-1La@ZNS | 2:01:07 | 600 | 15 | 37.2 | 78 | 68 | |
1Pt-1Y@ZNS | 2:01:07 | 600 | 15 | 38 | 83 | 22* | |
1Pt-1Sc@ZNS | 2:01:07 | 600 | 15 | 34.6 | 84 | 40* | |
GaPt MWFB 450 | 3:03:04 | 450 | 8.6 | 42* | 83* | 8* | [ |
Cr-10%/SiO2 | 1:02:01 | 650 | — | 30.5 | 98.6 | 21 | [ |
Fe-10%/SiO2 | 1:02:01 | 650 | — | 18.9 | 99 | 8.27 | |
Co-10%/SiO2 | 1:02:01 | 650 | — | 20.5 | 19.6 | 36.4 | |
Cr/SBA-15@4 | 1:01:00 | 650 | 7.2 | 18 | 76.3 | 9* | [ |
Cr/SBA-15@5 | 1:01:00 | 650 | 7.2 | 21.5 | 80.5 | 10* | |
Cr/SBA-15@7 | 1:01:00 | 650 | 7.2 | 25.8 | 81 | 14* | |
Cr/SBA-15@8 | 1:01:00 | 650 | 7.2 | 21.8 | 78.4 | 12* | |
Cr/ZSM-5-S-0.15 | 0.136365741 | 650 | 9 | 48.9 | 87.4 | — | [ |
8Cr-Cr-TEOS | 1:05:04 | 700 | 15 | 58 | 91* | — | [ |
Cr/Silicalite-1 | 0.136365741 | 650 | 9 | 40.2 | 93.8 | — | [ |
5 wt% CrOx/D-ERB-1 | 5:15:30 | 600 | 6 | 35.6 | 94.5 | - | [ |
0.5Cr/NaM | 0.136365741 | 650 | 9 | 5 | 95.7 | 2.5 | [ |
0.5Cr/NaM-d1 | 0.136365741 | 650 | 9 | 23 | 95 | 5.5 | |
0.5Cr/NaM-d2 | 0.136365741 | 650 | 9 | 23.9 | 94.8 | 6.1 | |
3Cr/NaM | 0.136365741 | 650 | 9 | 7.1 | 89.7 | 2.8 | |
3Cr/NaM-d1 | 0.136365741 | 650 | 9 | 36.1 | 88.9 | 9.8 | |
3Cr/NaM-d2 | 0.136365741 | 650 | 9 | 38.2 | 86.2 | 11.1 | |
8 wt% Cr/Al2O3 | 1:02:07 | 600 | 7.5 | 25* | 83* | 12* | [ |
8 wt% Cr/Al2O3 | 1:02:07 | 625 | 7.5 | 35* | 83* | 18* | |
8 wt% Cr/Al2O3 | 1:02:07 | 650 | 7.5 | 50* | 80* | 24* | |
8 wt% Cr/Al2O3 | 1:02:07 | 675 | 7.5 | 62* | 69* | 32* | |
Cr-TUD-1 | 1:05 | 650 | 24 | 37.5 | 92.5 | 6.8 | [ |
Cr/CZ | 1:01:03 | 700 | 6 | 31.7 | 52.6 | 33.7 | [ |
0.6KCr/CZ | 1:01:03 | 700 | 6 | 39.8 | 56.1 | 41.5 | |
1KCr/CZ | 1:01:03 | 700 | 6 | 43.1 | 68.6 | 42.8 | |
5KCr/CZ | 1:01:03 | 700 | 6 | 32 | 82.5 | 27.3 | |
10KCr/CZ | 1:01:03 | 700 | 6 | 28 | 79 | 25.7 | |
Cr2O3(5%)/HZSM-5-ZrO2(10%) | 1:05:04 | 700 | 6 | 64.6 | 87* | — | [ |
Cr/Ce-MCM-41(Si/Ce=25)-p | 1:05:04 | 700 | 9 | 64* | 97* | — | [ |
Cr/MgO(50)-CeO2(50) | 1:04:05 | 700 | 6000 h‒1 | 68.28 | 61.97 | — | [ |
5%Cr /ZSM-5 | 1:01:08 | 800 | 12 | 70* | 64* | 55* | [ |
5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 57* | 80* | 18* | |
5%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 71* | 64* | 65* | |
10%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 72* | 53* | 82* | |
15%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 70* | 65* | 70* | |
5%Cr-10%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 67* | 75* | 53* | |
5%Cr-15%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 62* | 75* | 54* | |
Fe/0Mg10Al | 1:01:08 | 650 | 6 | 12 | 96 | 9 | [ |
Fe/3Mg7Al | 1:01:08 | 650 | 6 | 21 | 84 | 20 | |
Fe/5Mg5Al | 1:01:08 | 650 | 6 | 14 | 87 | 16 | |
Fe/10Mg0Al | 1:01:08 | 650 | 6 | 9 | 73 | 14 | |
Fe/S1-EDA | 1:01:08 | 650 | 6 | 15 | 90 | 10 | |
Fe/SiO2 | 1:01:08 | 650 | 6 | 4 | 90 | 2 | |
Fe/S1 | 1:01:08 | 650 | 6 | 10 | 94 | 9 | |
Fe/commercial MgO | 1:01:08 | 650 | 6 | 7 | 73 | 13 | |
Fe/ZrO2 | 1:01:08 | 650 | 6 | 30 | 55 | 37 | |
1FeZr | 1:01:03 | 650 | 12 | 9 | 85 | 8 | [ |
3FeZr | 1:01:03 | 650 | 12 | 21 | 71 | 25 | |
5FeZr | 1:01:03 | 650 | 12 | 25 | 60 | 29 | |
10FeZr | 1:01:03 | 650 | 12 | 19 | 61 | 24 | |
5Fe-10Co/Al2O3 | 1:01:02 | 700 | 7.2 | 16 | 55 | — | [ |
Fe/NiMgZr | 01:01.2 | 600 | 1.4 | 30* | 68* | 33* | [ |
5Fe/10NiMgZr | 1:01 | 650 | 5.4 | 23.3 | 90 | 25.5 | [ |
Fe3Ni1/SiO2 | 1:01:02 | 600 | 24 | 0.4 | 75* | 0.9 | [ |
Fe3Ni1/ZrO2 | 1:01:02 | 600 | 24 | 2.6 | 61.7 | 5.6 | |
Fe3Ni1/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 82 | 6.9 | |
Fe0.75Ni0.25/CeO2 | 1:01:02 | 600 | 24 | 2.2 | 76.7 | 4.7 | |
Fe1.5Ni0.5/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 79.2 | 6.2 | |
Fe6Ni2/CeO2 | 1:01:02 | 600 | 24 | 3.4 | 67.4 | 8.7 | |
Fe12Ni4/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 31.9 | 13.1 | |
Ni1Fe3/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 77.5 | 5.9 | [ |
NiFe/CeO2-C1 | 1:01:02 | 600 | 24 | 4.6 | 83 | 6.2 | [ |
NiFe/CeO2-C2 | 1:01:02 | 600 | 24 | 3.9 | 47 | 8 | |
NiFe/CeO2-C3 | 1:01:02 | 600 | 24 | 2.6 | 40 | 7.9 | |
NiFe/CeO2-S | 1:01:02 | 600 | 24 | 1.9 | 48 | 5.5 | |
Fe1.5Ni0.5/ZrO2-T | 1:01:01 | 650 | 9 | 3.2 | 22.3 | 3.8 | [ |
Fe1.5Ni0.5/ZrO2-Mix | 1:01:01 | 650 | 9 | 9.9 | 68.9 | 15.3 | |
Fe1.5Ni0.5/ZrO2-M | 1:01:01 | 650 | 9 | 21.8 | 80.5 | 25.2 | |
FeNi@CNTs | 4:04:02 | 500 | 60 | 2.3 | 41.6 | — | [ |
1 wt% Co/S-1 | 1:01:03 | 650 | 12 | 20 | 84 | 8 | [ |
CoZ-IM | 0.130219907 | 650 | 9 | 74.6 | 3.6 | 81.8 | [ |
CoZ-IE | 0.130219907 | 650 | 9 | 26.5 | 96.7 | 4.3 | |
0.75Co/SiO2 | 1:02 | 700 | 6 | 46 | 85 | 12* | [ |
1%Co-HMS | 1:01:02 | 650 | 6 | 24.4 | 86.7 | — | [ |
1%Co-HMS (1 h) | 1:01:02 | 650 | 6 | 26 | 92.6 | — | [ |
CoZ5-C | 0.130219907 | 650 | 9 | 51.3 | 90.3 | — | [ |
Mo2C/SiO2-WI | 1:01:02 | 600 | 15 | 5.8 | 57* | 5* | [ |
Mo2C/SiO2-SG | 1:01:02 | 600 | 15 | 4.7 | 64* | 1* | |
Mo2C/SiO2-HNC | 1:01:02 | 600 | 15 | 2 | 60* | 4* | |
Mo/5CeTi | 0.212847222 | 600 | 15 | 15* | 72 | — | [ |
VOx/ZrO2(25)-MgO(75)-A | 1:05:04 | 700 | 600 s‒1 | 67.14 | 90* | — | [ |
V2O5/MgO-ZrO2(S1) | 1:04:05 | 700 | 6000 h‒1 | 79 | 61* | — | [ |
VOx/Mg-Zr-MCM-41 | 1:04:05 | 700 | 6000 h‒1 | 55* | 76* | — | [ |
Ga2O3 | 0.136365741 | 650 | 9 | 13 | 87.4 | 5.2 | [ |
MgGa2O4 | 0.136365741 | 650 | 9 | 35.2 | 81.8 | 8.3 | |
MgGa1.5Al0.5O4 | 0.136365741 | 650 | 9 | 44.3 | 87.1 | 6.1 | |
MgGa1Al1O4 | 0.136365741 | 650 | 9 | 42.7 | 91.7 | 9.3 | |
MgGa0.5Al1.5O4 | 0.136365741 | 650 | 9 | 21.2 | 99.6 | 4.1 | |
Ga/ZSM-5-S | 0.136365741 | 650 | 9 | 25.3 | 91.7 | — | [ |
Ga/meso-TiO2 | 1:05:04 | 550 | 4 | 12* | 73* | — | [ |
Ga/TiSi-3 | 0.136365741 | 650 | 9 | 31.6 | 86.6 | — | [ |
CoZ | 0.136365741 | 650 | 9 | 36 | 93.5 | 1.1 | [ |
Zn/HZ | 0.136365741 | 650 | 9 | 41.1 | 85.6 | 7.5 | |
Zn/CoZ | 0.136365741 | 650 | 9 | 49.4 | 84.9 | 7.8 | |
Zn8.35/NaS-U | 1:01:18 | 650 | 3.6 | 37.3 | 88.1 | 19.4 | [ |
Zn8.67/NaS-N | 1:01:18 | 650 | 3.6 | 65.9 | 59 | 36 | |
Zn9.18K0.74/NaS-N | 1:01:18 | 650 | 3.6 | 61.9 | 68.6 | 35.4 | |
Zn8.95K1.36/NaS-N | 1:01:18 | 650 | 3.6 | 56.5 | 78.9 | 30 | |
Zn8.80K1.96/NaS-N | 1:01:18 | 650 | 3.6 | 42.5 | 89.1 | 13.9 | |
Zn2.92/NaS50 | 1:01:18 | 550 | 3.6 | 68* | 94* | 58* | [ |
Zn2.92/NaS50 | 1:01:18 | 580 | 3.6 | 55* | 89* | 44* | |
Zn2.92/NaS50 | 1:01:18 | 600 | 3.6 | 44* | 84* | 31* | |
Zn2.92/NaS50 | 1:01:18 | 625 | 3.6 | 34* | 75* | 21* | |
Zn2.92/NaS50 | 1:01:18 | 650 | 3.6 | 23* | 64* | 12* | |
5%Zn-ZSM-5(11.5) | 1:05 | 500 | 3.2 | 16.4 | 47.8 | 1.4 | [ |
5%Zn-ZSM-5(25) | 1:05 | 500 | 3.2 | 10.5 | 59.3 | 0.6 | |
5%Zn-silicalite-1 | 1:05 | 500 | 3.2 | 1.8 | 61 | 0.13 | |
Si0.1CeO2 | 2:02:06 | 700 | 6 | 41.4 | 64.9 | 46.2 | [ |
CeO2 | 2:02:06 | 700 | 6 | 39 | 24 | 45.4 | |
3CT1Z1 | 1:02:17 | 650 | 9 | 33.8 | 73* | 18 | [ |
Table 2 Summary of the catalytic performance of various metal-based catalysts used in CO2-ODHE reactions.
Catalyst | Feed ratio (C2:CO2:inert gas) | Temp. (°C) | WHSV (L/g/h) | XC2 (%) | SC2 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
1.0% Pd(1:0)/CeO2 | 1:01:02 | 600 | 24 | 4.6 | 59.6 | 8.6 | [ |
1.0% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 6.1 | 86.4 | 7.1 | |
1.0% PdFe(1:9)/CeO2 | 1:01:02 | 600 | 24 | 6.6 | 85.8 | 8.3 | |
0.5% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 4.9 | 87.2 | 6.7 | |
0.1% PdFe(1:3)/CeO2 | 1:01:02 | 600 | 24 | 3.2 | 93.1 | 3.7 | |
1.4% Fe(0:3)/CeO2 | 1:01:02 | 600 | 24 | 0.9 | 40 | 2.5 | |
1%PdCo3/CeO2 | 1:01:02 | 600 | 24 | 8.3 | 10.6 | 21.6 | [ |
1%PdIn3/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 89 | 4.5 | |
1%PdGa3/CeO2 | 1:01:02 | 600 | 24 | 0.4 | 95.5 | 0.8 | |
1%PdSn3/CeO2 | 1:01:02 | 600 | 24 | 2.8 | 88.9 | 2.9 | |
1%PdFe3/CeO2 | 1:01:02 | 600 | 24 | 4.9 | 81.7 | 5.7 | |
1%PdAg3/CeO2 | 1:01:02 | 600 | 24 | 3.6 | 65.5 | 5.6 | |
1%PdAu3/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 56.9 | 6.7 | |
1%PdCu3/CeO2 | 1:01:02 | 600 | 24 | 2.4 | 39.4 | 5.3 | |
1%PdNi3/CeO2 | 1:01:02 | 600 | 24 | 9.4 | 5.7 | 23.4 | |
1%PdPt3/CeO2 | 1:01:02 | 600 | 24 | 16.1 | 2.2 | 37.8 | |
1%PdRh3/CeO2 | 1:01:02 | 600 | 24 | 27.7 | 0.8 | 56.1 | |
1%PdRu3/CeO2 | 1:01:02 | 600 | 24 | 31.3 | 0.3 | 63.4 | |
1%PdIr3/CeO2 | 1:01:02 | 600 | 24 | 33.5 | 0.7 | 61.1 | |
Pd-Fe6/CeO2 | 1:02:03 | 650 | 18 | 9.9 | 80.4 | 9.3 | [ |
Pd-Co6/CeO2 | 1:02:03 | 650 | 18 | 24.9 | 4.4 | 34.2 | |
Pd-Ni9/CeO2 | 1:02:03 | 650 | 18 | 74.9 | 2 | 62.2 | |
Au/CeR | 0.136365741 | 650 | 9 | 16.9 | 97.6 | — | [ |
Au/Ce0.9Y0.1 | 0.136365741 | 650 | 9 | 20.9 | 99.5 | — | [ |
PtCe@MZ | 2:01:17 | 600 | 15 | 34 | 94 | 35* | [ |
1Pt@ZNS | 2:01:07 | 600 | 15 | 9.5 | 54 | 48* | [ |
1Pt-1La@ZNS | 2:01:07 | 600 | 15 | 37.2 | 78 | 68 | |
1Pt-1Y@ZNS | 2:01:07 | 600 | 15 | 38 | 83 | 22* | |
1Pt-1Sc@ZNS | 2:01:07 | 600 | 15 | 34.6 | 84 | 40* | |
GaPt MWFB 450 | 3:03:04 | 450 | 8.6 | 42* | 83* | 8* | [ |
Cr-10%/SiO2 | 1:02:01 | 650 | — | 30.5 | 98.6 | 21 | [ |
Fe-10%/SiO2 | 1:02:01 | 650 | — | 18.9 | 99 | 8.27 | |
Co-10%/SiO2 | 1:02:01 | 650 | — | 20.5 | 19.6 | 36.4 | |
Cr/SBA-15@4 | 1:01:00 | 650 | 7.2 | 18 | 76.3 | 9* | [ |
Cr/SBA-15@5 | 1:01:00 | 650 | 7.2 | 21.5 | 80.5 | 10* | |
Cr/SBA-15@7 | 1:01:00 | 650 | 7.2 | 25.8 | 81 | 14* | |
Cr/SBA-15@8 | 1:01:00 | 650 | 7.2 | 21.8 | 78.4 | 12* | |
Cr/ZSM-5-S-0.15 | 0.136365741 | 650 | 9 | 48.9 | 87.4 | — | [ |
8Cr-Cr-TEOS | 1:05:04 | 700 | 15 | 58 | 91* | — | [ |
Cr/Silicalite-1 | 0.136365741 | 650 | 9 | 40.2 | 93.8 | — | [ |
5 wt% CrOx/D-ERB-1 | 5:15:30 | 600 | 6 | 35.6 | 94.5 | - | [ |
0.5Cr/NaM | 0.136365741 | 650 | 9 | 5 | 95.7 | 2.5 | [ |
0.5Cr/NaM-d1 | 0.136365741 | 650 | 9 | 23 | 95 | 5.5 | |
0.5Cr/NaM-d2 | 0.136365741 | 650 | 9 | 23.9 | 94.8 | 6.1 | |
3Cr/NaM | 0.136365741 | 650 | 9 | 7.1 | 89.7 | 2.8 | |
3Cr/NaM-d1 | 0.136365741 | 650 | 9 | 36.1 | 88.9 | 9.8 | |
3Cr/NaM-d2 | 0.136365741 | 650 | 9 | 38.2 | 86.2 | 11.1 | |
8 wt% Cr/Al2O3 | 1:02:07 | 600 | 7.5 | 25* | 83* | 12* | [ |
8 wt% Cr/Al2O3 | 1:02:07 | 625 | 7.5 | 35* | 83* | 18* | |
8 wt% Cr/Al2O3 | 1:02:07 | 650 | 7.5 | 50* | 80* | 24* | |
8 wt% Cr/Al2O3 | 1:02:07 | 675 | 7.5 | 62* | 69* | 32* | |
Cr-TUD-1 | 1:05 | 650 | 24 | 37.5 | 92.5 | 6.8 | [ |
Cr/CZ | 1:01:03 | 700 | 6 | 31.7 | 52.6 | 33.7 | [ |
0.6KCr/CZ | 1:01:03 | 700 | 6 | 39.8 | 56.1 | 41.5 | |
1KCr/CZ | 1:01:03 | 700 | 6 | 43.1 | 68.6 | 42.8 | |
5KCr/CZ | 1:01:03 | 700 | 6 | 32 | 82.5 | 27.3 | |
10KCr/CZ | 1:01:03 | 700 | 6 | 28 | 79 | 25.7 | |
Cr2O3(5%)/HZSM-5-ZrO2(10%) | 1:05:04 | 700 | 6 | 64.6 | 87* | — | [ |
Cr/Ce-MCM-41(Si/Ce=25)-p | 1:05:04 | 700 | 9 | 64* | 97* | — | [ |
Cr/MgO(50)-CeO2(50) | 1:04:05 | 700 | 6000 h‒1 | 68.28 | 61.97 | — | [ |
5%Cr /ZSM-5 | 1:01:08 | 800 | 12 | 70* | 64* | 55* | [ |
5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 57* | 80* | 18* | |
5%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 71* | 64* | 65* | |
10%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 72* | 53* | 82* | |
15%Cr-5%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 70* | 65* | 70* | |
5%Cr-10%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 67* | 75* | 53* | |
5%Cr-15%Ce/ZSM-5 | 1:01:08 | 800 | 12 | 62* | 75* | 54* | |
Fe/0Mg10Al | 1:01:08 | 650 | 6 | 12 | 96 | 9 | [ |
Fe/3Mg7Al | 1:01:08 | 650 | 6 | 21 | 84 | 20 | |
Fe/5Mg5Al | 1:01:08 | 650 | 6 | 14 | 87 | 16 | |
Fe/10Mg0Al | 1:01:08 | 650 | 6 | 9 | 73 | 14 | |
Fe/S1-EDA | 1:01:08 | 650 | 6 | 15 | 90 | 10 | |
Fe/SiO2 | 1:01:08 | 650 | 6 | 4 | 90 | 2 | |
Fe/S1 | 1:01:08 | 650 | 6 | 10 | 94 | 9 | |
Fe/commercial MgO | 1:01:08 | 650 | 6 | 7 | 73 | 13 | |
Fe/ZrO2 | 1:01:08 | 650 | 6 | 30 | 55 | 37 | |
1FeZr | 1:01:03 | 650 | 12 | 9 | 85 | 8 | [ |
3FeZr | 1:01:03 | 650 | 12 | 21 | 71 | 25 | |
5FeZr | 1:01:03 | 650 | 12 | 25 | 60 | 29 | |
10FeZr | 1:01:03 | 650 | 12 | 19 | 61 | 24 | |
5Fe-10Co/Al2O3 | 1:01:02 | 700 | 7.2 | 16 | 55 | — | [ |
Fe/NiMgZr | 01:01.2 | 600 | 1.4 | 30* | 68* | 33* | [ |
5Fe/10NiMgZr | 1:01 | 650 | 5.4 | 23.3 | 90 | 25.5 | [ |
Fe3Ni1/SiO2 | 1:01:02 | 600 | 24 | 0.4 | 75* | 0.9 | [ |
Fe3Ni1/ZrO2 | 1:01:02 | 600 | 24 | 2.6 | 61.7 | 5.6 | |
Fe3Ni1/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 82 | 6.9 | |
Fe0.75Ni0.25/CeO2 | 1:01:02 | 600 | 24 | 2.2 | 76.7 | 4.7 | |
Fe1.5Ni0.5/CeO2 | 1:01:02 | 600 | 24 | 3.1 | 79.2 | 6.2 | |
Fe6Ni2/CeO2 | 1:01:02 | 600 | 24 | 3.4 | 67.4 | 8.7 | |
Fe12Ni4/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 31.9 | 13.1 | |
Ni1Fe3/CeO2 | 1:01:02 | 600 | 24 | 3.5 | 77.5 | 5.9 | [ |
NiFe/CeO2-C1 | 1:01:02 | 600 | 24 | 4.6 | 83 | 6.2 | [ |
NiFe/CeO2-C2 | 1:01:02 | 600 | 24 | 3.9 | 47 | 8 | |
NiFe/CeO2-C3 | 1:01:02 | 600 | 24 | 2.6 | 40 | 7.9 | |
NiFe/CeO2-S | 1:01:02 | 600 | 24 | 1.9 | 48 | 5.5 | |
Fe1.5Ni0.5/ZrO2-T | 1:01:01 | 650 | 9 | 3.2 | 22.3 | 3.8 | [ |
Fe1.5Ni0.5/ZrO2-Mix | 1:01:01 | 650 | 9 | 9.9 | 68.9 | 15.3 | |
Fe1.5Ni0.5/ZrO2-M | 1:01:01 | 650 | 9 | 21.8 | 80.5 | 25.2 | |
FeNi@CNTs | 4:04:02 | 500 | 60 | 2.3 | 41.6 | — | [ |
1 wt% Co/S-1 | 1:01:03 | 650 | 12 | 20 | 84 | 8 | [ |
CoZ-IM | 0.130219907 | 650 | 9 | 74.6 | 3.6 | 81.8 | [ |
CoZ-IE | 0.130219907 | 650 | 9 | 26.5 | 96.7 | 4.3 | |
0.75Co/SiO2 | 1:02 | 700 | 6 | 46 | 85 | 12* | [ |
1%Co-HMS | 1:01:02 | 650 | 6 | 24.4 | 86.7 | — | [ |
1%Co-HMS (1 h) | 1:01:02 | 650 | 6 | 26 | 92.6 | — | [ |
CoZ5-C | 0.130219907 | 650 | 9 | 51.3 | 90.3 | — | [ |
Mo2C/SiO2-WI | 1:01:02 | 600 | 15 | 5.8 | 57* | 5* | [ |
Mo2C/SiO2-SG | 1:01:02 | 600 | 15 | 4.7 | 64* | 1* | |
Mo2C/SiO2-HNC | 1:01:02 | 600 | 15 | 2 | 60* | 4* | |
Mo/5CeTi | 0.212847222 | 600 | 15 | 15* | 72 | — | [ |
VOx/ZrO2(25)-MgO(75)-A | 1:05:04 | 700 | 600 s‒1 | 67.14 | 90* | — | [ |
V2O5/MgO-ZrO2(S1) | 1:04:05 | 700 | 6000 h‒1 | 79 | 61* | — | [ |
VOx/Mg-Zr-MCM-41 | 1:04:05 | 700 | 6000 h‒1 | 55* | 76* | — | [ |
Ga2O3 | 0.136365741 | 650 | 9 | 13 | 87.4 | 5.2 | [ |
MgGa2O4 | 0.136365741 | 650 | 9 | 35.2 | 81.8 | 8.3 | |
MgGa1.5Al0.5O4 | 0.136365741 | 650 | 9 | 44.3 | 87.1 | 6.1 | |
MgGa1Al1O4 | 0.136365741 | 650 | 9 | 42.7 | 91.7 | 9.3 | |
MgGa0.5Al1.5O4 | 0.136365741 | 650 | 9 | 21.2 | 99.6 | 4.1 | |
Ga/ZSM-5-S | 0.136365741 | 650 | 9 | 25.3 | 91.7 | — | [ |
Ga/meso-TiO2 | 1:05:04 | 550 | 4 | 12* | 73* | — | [ |
Ga/TiSi-3 | 0.136365741 | 650 | 9 | 31.6 | 86.6 | — | [ |
CoZ | 0.136365741 | 650 | 9 | 36 | 93.5 | 1.1 | [ |
Zn/HZ | 0.136365741 | 650 | 9 | 41.1 | 85.6 | 7.5 | |
Zn/CoZ | 0.136365741 | 650 | 9 | 49.4 | 84.9 | 7.8 | |
Zn8.35/NaS-U | 1:01:18 | 650 | 3.6 | 37.3 | 88.1 | 19.4 | [ |
Zn8.67/NaS-N | 1:01:18 | 650 | 3.6 | 65.9 | 59 | 36 | |
Zn9.18K0.74/NaS-N | 1:01:18 | 650 | 3.6 | 61.9 | 68.6 | 35.4 | |
Zn8.95K1.36/NaS-N | 1:01:18 | 650 | 3.6 | 56.5 | 78.9 | 30 | |
Zn8.80K1.96/NaS-N | 1:01:18 | 650 | 3.6 | 42.5 | 89.1 | 13.9 | |
Zn2.92/NaS50 | 1:01:18 | 550 | 3.6 | 68* | 94* | 58* | [ |
Zn2.92/NaS50 | 1:01:18 | 580 | 3.6 | 55* | 89* | 44* | |
Zn2.92/NaS50 | 1:01:18 | 600 | 3.6 | 44* | 84* | 31* | |
Zn2.92/NaS50 | 1:01:18 | 625 | 3.6 | 34* | 75* | 21* | |
Zn2.92/NaS50 | 1:01:18 | 650 | 3.6 | 23* | 64* | 12* | |
5%Zn-ZSM-5(11.5) | 1:05 | 500 | 3.2 | 16.4 | 47.8 | 1.4 | [ |
5%Zn-ZSM-5(25) | 1:05 | 500 | 3.2 | 10.5 | 59.3 | 0.6 | |
5%Zn-silicalite-1 | 1:05 | 500 | 3.2 | 1.8 | 61 | 0.13 | |
Si0.1CeO2 | 2:02:06 | 700 | 6 | 41.4 | 64.9 | 46.2 | [ |
CeO2 | 2:02:06 | 700 | 6 | 39 | 24 | 45.4 | |
3CT1Z1 | 1:02:17 | 650 | 9 | 33.8 | 73* | 18 | [ |
Fig. 10. The schematic model of propane and CO2 activated on the finned NPs@Zn-MFI zeolite catalysts. Adopted with permission from Ref. [155]. Copyright 2023, Elsevier.
Fig. 11. The XPS spectra of Cr 2p in fresh and spent catalysts: 5%Cr/ZrO2 (a) and 5%Cr/Ce0.2Zr0.8O2 (b) catalysts. Adopted with permission from Ref. [175]. Copyright 2023, American Chemical Society.
Fig. 12. Defect-dependent selective C?H/C?C bond cleavage of propane in the presence of CO2 over FeNi/Ceria catalysts. Adopted with permission from Ref. [183]. Copyright 2021, American Chemical Society.
Fig. 13. Understanding the role of Fe doping in tuning the size and dispersion of GaN nanocrystallites for CO2-assisted oxidative dehydrogenation of propane. Adopted with permission from Ref. [200]. Copyright 2022, American Chemical Society.
Fig. 14. Effects of support and CO2 on the performances of vanadium oxide-based catalysts in propane dehydrogenation. Adopted with permission from Ref. [210]. Copyright 2022, American Chemical Society.
Catalyst | Feed ratio (C3:CO2:inert gas) | Temp. (°C) | WHSV (L g‒1 h‒1) | XC3 (%) | SC3 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
5%Pd/CeZrAlOx | 37:37:26 | 500 | 6000 h‒1 | 9.5 | 93 | — | [ |
Pd1 | 1:01:02 | 550 | 24 | 0.4 | 44.4 | 3.2 | [ |
Fe3Pd1 | 1:01:02 | 550 | 24 | 0.4 | 57.6 | 0.1 | |
Co3Pd1 | 1:01:02 | 550 | 24 | 2.8 | 25.2 | 8.4 | |
Ni3Pd1 | 1:01:02 | 550 | 24 | 5.3 | 11.2 | 17.6 | |
Pt1 | 1:01:02 | 550 | 24 | 1.6 | 21.4 | 4 | |
Fe3Pt1 | 1:01:02 | 550 | 24 | 1.1 | 32 | 2.6 | |
Co3Pt1 | 1:01:02 | 550 | 24 | 5.6 | 10.1 | 20.3 | |
dCo3Pt1 | 1:01:02 | 550 | 24 | 3.4 | 27.3 | 9.5 | |
Ni3Pt1 | 1:01:02 | 550 | 24 | 11.6 | 2.8 | 39.4 | |
Fe1Co3 | 1:01:02 | 550 | 24 | 0.9 | 43.8 | 1.5 | |
Fe3Co1 | 1:01:02 | 550 | 24 | 0.27 | 57.1 | 0.23 | |
Fe3Ni1 | 1:01:02 | 550 | 24 | 2.7 | 58.2 | 4 | |
Fe1Ni3 | 1:01:02 | 550 | 24 | 7.4 | 2.9 | 26.9 | |
Fe3Ni3 | 1:01:02 | 550 | 24 | 5 | 20.4 | 16.1 | |
Fe9Ni3 | 1:01:02 | 550 | 24 | 3.4 | 22.5 | 10.9 | |
1Pt5Sn/CeO2 | 4:20:01 | 500 | 6 | 21* | 79* | — | [ |
0.1 wt% Pt/1.0 wt% Sn-CeO2 | 2.4:4.8:10 | 550 | 1 | 15.1 | 63.9 | 22* | [ |
Pt1Fe7/S-1 | 5:05:30 | 550 | 16 | 25* | 95* | 14* | [ |
1Pt-1Zn/SiNS | 1:01 | 600 | 2.4 | 46.7 | 80 | — | [ |
0.25%Rh0.50%Pt@Zn-MFI | 6:06:18 | 600 | 3.6 | 48* | 60* | 23* | [ |
Pt1Co1-SiBeta | 1:01:03 | 550 | 12 | 51.8 | 91.8 | 30.6 | [ |
Pt2-SiBeta | 1:01:03 | 550 | 12 | 3.6 | 85.1 | 0.4 | |
Pt1.5Co0.5-SiBeta | 1:01:03 | 550 | 12 | 21.8 | 86.3 | 6.3 | |
Pt0.5Co1.5-SiBeta | 1:01:03 | 550 | 12 | 23.5 | 73.8 | 22.9 | |
Co2-SiBeta | 1:01:03 | 550 | 12 | 26.4 | 93.1 | 14.8 | |
Pt-Co-In/CeO2 | 1:01:02 | 550 | 12 | 52 | 95 | 57 | [ |
HEI/CeO2 | 1:01:02 | 600 | 12 | 30 | 94 | 53 | [ |
Ru1Cr10Ox/SiO2 | 1:01:01 | 496 | 12 | 9 | 85 | 5* | [ |
7Cr/SiO2-5 | 1:02 | 650 | 3.6 | 80 | 20 | — | [ |
CrOx/silicalite-1-0.15 | 4:20:01 | 550 | 3 | 36* | 86* | 4* | [ |
Cr/GNFp | 1:02 | 600 | 3.6 | 21 | 56.2 | — | [ |
Cr0.5SiBeta | 1:05:09 | 550 | 9 | 11 | 94.7 | 0.6 | [ |
Cr1.0SiBeta | 1:05:09 | 550 | 9 | 17.6 | 90.8 | 1.2 | |
Cr2.0SiBeta | 1:05:09 | 550 | 9 | 24.8 | 87.1 | 4 | |
Cr5.0SiBeta | 1:05:09 | 550 | 9 | 27.6 | 84.4 | 5.5 | |
Cr7.0SiBeta | 1:05:09 | 550 | 9 | 33.3 | 81.6 | 7 | |
Cr2.0AlBeta | 1:05:09 | 550 | 9 | 4.5 | 45.1 | 0.8 | |
ALD-Cr 0.72% | 1:05:14 | 600 | 4.5 | 34* | 88* | — | [ |
7% Cr-TUD-1 | 10.5:2.55 | 550 | 1020 h‒1 | 45 | 75 | — | [ |
Cr/MSS-1 | 2:08:08 | 600 | 5.4 | 30* | 88* | 4.7 | [ |
Cr/MSS-2 | 2:08:08 | 600 | 5.4 | 32* | 89* | 5.3 | |
Cr/MSS-3 | 2:08:08 | 600 | 5.4 | 29* | 88* | 4.3 | |
Cr/MSS-4 | 2:08:08 | 600 | 5.4 | 27* | 88* | 2.6 | |
5СrOy/Сe0.5Zr0.5O2/SiO2_wet | 1:02 | 675 | 3.6 | 38 | 77 | — | [ |
1Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 3.6 | 87.9 | 1.5 | [ |
2Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 20.2 | 93.5 | 4.1 | |
3Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 12.1 | 90.1 | 3.3 | |
2Cr-ZrO2 | 1:03:06 | 550 | 5 | 17 | 88.2 | 6 | |
2Cr/10Fe-CeO2 | 0.212847222 | 510 | 60 | 2.9* | 80* | — | [ |
7Cr-ZrO2 | 1:02:37 | 550 | 6 | 68 | 60* | 37* | [ |
c-2.5CZ | 2.5:6.5:91 | 550 | 6 | 26 | 69* | 13 | [ |
m-2.5CZ | 2.5:6.5:91 | 550 | 6 | 42 | 60* | 23 | |
c-5CZ | 2.5:6.5:91 | 550 | 6 | 41 | 63* | 24 | |
m-5CZ | 2.5:6.5:91 | 550 | 6 | 58 | 52* | 42 | |
c-10CZ | 2.5:6.5:91 | 550 | 6 | 38 | 68* | 17 | |
m-10CZ | 2.5:6.5:91 | 550 | 6 | 36 | 59* | 21 | |
c-15CZ | 2.5:6.5:91 | 550 | 6 | 59 | 58* | 33 | |
m-15CZ | 2.5:6.5:91 | 550 | 6 | 58 | 59* | 35 | |
5Cr/ZrO2 | 1:02:37 | 600 | 6 | 79.8 | 57.6 | 42.7 | [ |
5Cr/Ce0.1Zr0.9O2 | 1:02:37 | 600 | 6 | 75 | 66.7 | 41.6 | |
5Cr/Ce0.2Zr0.8O2 | 1:02:37 | 600 | 6 | 62.6 | 79.4 | 31.2 | |
5Cr/Ce0.3Zr0.7O2 | 1:02:37 | 600 | 6 | 57.9 | 82.4 | 33.8 | |
5Cr/Ce0.5Zr0.5O2 | 1:02:37 | 600 | 6 | 9.7 | 92.9 | 7.9 | |
5Cr/CeO2 | 1:02:37 | 600 | 6 | 20.8 | 79.8 | 11.9 | |
5 wt% Cr/Al2O3 | 0.085833333 | 600 | 60 | 13.6 | 90 | — | [ |
12 Fe2O3/ZrO2 | 1:02:37 | 600 | 6 | 32 | 73 | — | [ |
Fe2O3-19ZrO2 | 01:01.5 | 550 | 1.8 | 10.2 | 89.2 | 7.35 | [ |
Fe2O3-9ZrO2 | 01:01.5 | 550 | 1.8 | 17.6 | 87.8 | 12.5 | |
Fe2O3-4ZrO2 | 01:01.5 | 550 | 1.8 | 38.7 | 85.7 | 27.5 | |
Fe2O3-3ZrO2 | 01:01.5 | 550 | 1.8 | 39.9 | 83.7 | 28.2 | |
Fe2O3-2ZrO2 | 01:01.5 | 550 | 1.8 | 40.8 | 85.1 | 30.8 | |
Fe2O3-1ZrO2 | 01:01.5 | 550 | 1.8 | 36.3 | 88.5 | 25.7 | |
Fe2O3 | 01:01.5 | 550 | 1.8 | 29.3 | 90.5 | 24.2 | |
FeCr50 | 37:37:26 | 550 | 4.5 | 14.2 | 71 | — | [ |
Fe0.67Ce0.5O2 | 2:02:06 | 700 | 6 | 42.2 | 37.4 | 51.3 | [ |
15FeCeO2 | 0.212847222 | 550 | 6 | 21.5 | 45* | 28* | [ |
FeNi/Ceria-Vo-R | 2.4:4.8:10 | 550 | 1 | 25.2 | 49 | — | [ |
ZnFe2Ox/S-1 | 1:01:04 | 580 | 7.2 | 38* | 97* | 19* | [ |
2V-Fe/KIT-6 | 1:04:05 | 580 | 6 | 37.8 | 87 | 18.5 | [ |
5Fe-5V-Al2O3 | 0.636226852 | 600 | 7.5 | 41.3 | 84.4 | 31* | [ |
7 Ga/SiO2(A) | 1:02 | 600 | 1.8 | 33 | 84 | — | [ |
5% Ga/HZSM-5 | 1:01:08 | 600 | 90 | 25* | 50* | — | [ |
8Ga2O3/SiO2 | 2.5:2.5:60 | 600 | 3.9 | 37* | 93* | — | [ |
ALD-3C (2.9%Ga) | 0.22650463 | 600 | 4.5 | 38 | 82 | — | [ |
Ga4.0SiBEA | 2.5:15:82.5 | 600 | 9 | 57.5 | 64 | — | [ |
5-GaN/Q-3 | 1:02:07 | 600 | 9 | 31 | 93 | — | [ |
5GaN/NaZSM-5(470) | 1:02:07 | 600 | 9 | 45 | 63* | — | [ |
5GaN/KIT-6 | 1:02:07 | 600 | 9 | 24* | 95* | 5* | [ |
5GaN/2000-Fe-silicalite-1 | 1.5:3:25.5 | 600 | 9 | 45* | 78* | 6* | [ |
V-La-MSNS | 1:02:07 | 550 | 6 | 37* | 79* | — | [ |
0.5Cu-10VOx/S-1 | 01:01.5 | 600 | 1.8 | 36 | 90 | 22 | [ |
AlVO7B | 1:01 | 650 | 18 | 62* | 55* | 22* | [ |
20 CeVO4/AC | 1:01:01 | 550 | 6 | 8.5 | 57 | — | [ |
3.4V/In | 2.5:2.5:95 | 540 | 18 | 4.2* | 67* | — | [ |
3.4V/In-S | 2.5:2.5:95 | 540 | 18 | 6.5* | 65* | — | [ |
5.2V-MSNSs | 1:04:04 | 600 | 4.5 | 58* | 83* | — | [ |
6.8V-MCM-41 | 1:04:04 | 600 | 4.5 | 57* | 90* | — | [ |
VOx/SiO2 | 1:01:06 | 600 | 16 | 5.8* | 99* | — | [ |
Co/S-1-HTS | 2.5:2.5:95 | 550 | 24 | 60* | 98* | — | [ |
20%ZnO-ZrO2 | 4:20:01 | 550 | 6 | 18* | 76* | — | [ |
Zn/Mo-Zr-10 | 1:02 | 550 | 7.2 h‒1 | 29.5 | 80 | 12 | [ |
12% In/HZSM-5 | 1:04 | 580 | 6 | 13.3 | 78.9 | 6.34 | [ |
Table 3 Summary of the catalytic performance of various metal-based catalysts used in CO2-ODHP.
Catalyst | Feed ratio (C3:CO2:inert gas) | Temp. (°C) | WHSV (L g‒1 h‒1) | XC3 (%) | SC3 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
5%Pd/CeZrAlOx | 37:37:26 | 500 | 6000 h‒1 | 9.5 | 93 | — | [ |
Pd1 | 1:01:02 | 550 | 24 | 0.4 | 44.4 | 3.2 | [ |
Fe3Pd1 | 1:01:02 | 550 | 24 | 0.4 | 57.6 | 0.1 | |
Co3Pd1 | 1:01:02 | 550 | 24 | 2.8 | 25.2 | 8.4 | |
Ni3Pd1 | 1:01:02 | 550 | 24 | 5.3 | 11.2 | 17.6 | |
Pt1 | 1:01:02 | 550 | 24 | 1.6 | 21.4 | 4 | |
Fe3Pt1 | 1:01:02 | 550 | 24 | 1.1 | 32 | 2.6 | |
Co3Pt1 | 1:01:02 | 550 | 24 | 5.6 | 10.1 | 20.3 | |
dCo3Pt1 | 1:01:02 | 550 | 24 | 3.4 | 27.3 | 9.5 | |
Ni3Pt1 | 1:01:02 | 550 | 24 | 11.6 | 2.8 | 39.4 | |
Fe1Co3 | 1:01:02 | 550 | 24 | 0.9 | 43.8 | 1.5 | |
Fe3Co1 | 1:01:02 | 550 | 24 | 0.27 | 57.1 | 0.23 | |
Fe3Ni1 | 1:01:02 | 550 | 24 | 2.7 | 58.2 | 4 | |
Fe1Ni3 | 1:01:02 | 550 | 24 | 7.4 | 2.9 | 26.9 | |
Fe3Ni3 | 1:01:02 | 550 | 24 | 5 | 20.4 | 16.1 | |
Fe9Ni3 | 1:01:02 | 550 | 24 | 3.4 | 22.5 | 10.9 | |
1Pt5Sn/CeO2 | 4:20:01 | 500 | 6 | 21* | 79* | — | [ |
0.1 wt% Pt/1.0 wt% Sn-CeO2 | 2.4:4.8:10 | 550 | 1 | 15.1 | 63.9 | 22* | [ |
Pt1Fe7/S-1 | 5:05:30 | 550 | 16 | 25* | 95* | 14* | [ |
1Pt-1Zn/SiNS | 1:01 | 600 | 2.4 | 46.7 | 80 | — | [ |
0.25%Rh0.50%Pt@Zn-MFI | 6:06:18 | 600 | 3.6 | 48* | 60* | 23* | [ |
Pt1Co1-SiBeta | 1:01:03 | 550 | 12 | 51.8 | 91.8 | 30.6 | [ |
Pt2-SiBeta | 1:01:03 | 550 | 12 | 3.6 | 85.1 | 0.4 | |
Pt1.5Co0.5-SiBeta | 1:01:03 | 550 | 12 | 21.8 | 86.3 | 6.3 | |
Pt0.5Co1.5-SiBeta | 1:01:03 | 550 | 12 | 23.5 | 73.8 | 22.9 | |
Co2-SiBeta | 1:01:03 | 550 | 12 | 26.4 | 93.1 | 14.8 | |
Pt-Co-In/CeO2 | 1:01:02 | 550 | 12 | 52 | 95 | 57 | [ |
HEI/CeO2 | 1:01:02 | 600 | 12 | 30 | 94 | 53 | [ |
Ru1Cr10Ox/SiO2 | 1:01:01 | 496 | 12 | 9 | 85 | 5* | [ |
7Cr/SiO2-5 | 1:02 | 650 | 3.6 | 80 | 20 | — | [ |
CrOx/silicalite-1-0.15 | 4:20:01 | 550 | 3 | 36* | 86* | 4* | [ |
Cr/GNFp | 1:02 | 600 | 3.6 | 21 | 56.2 | — | [ |
Cr0.5SiBeta | 1:05:09 | 550 | 9 | 11 | 94.7 | 0.6 | [ |
Cr1.0SiBeta | 1:05:09 | 550 | 9 | 17.6 | 90.8 | 1.2 | |
Cr2.0SiBeta | 1:05:09 | 550 | 9 | 24.8 | 87.1 | 4 | |
Cr5.0SiBeta | 1:05:09 | 550 | 9 | 27.6 | 84.4 | 5.5 | |
Cr7.0SiBeta | 1:05:09 | 550 | 9 | 33.3 | 81.6 | 7 | |
Cr2.0AlBeta | 1:05:09 | 550 | 9 | 4.5 | 45.1 | 0.8 | |
ALD-Cr 0.72% | 1:05:14 | 600 | 4.5 | 34* | 88* | — | [ |
7% Cr-TUD-1 | 10.5:2.55 | 550 | 1020 h‒1 | 45 | 75 | — | [ |
Cr/MSS-1 | 2:08:08 | 600 | 5.4 | 30* | 88* | 4.7 | [ |
Cr/MSS-2 | 2:08:08 | 600 | 5.4 | 32* | 89* | 5.3 | |
Cr/MSS-3 | 2:08:08 | 600 | 5.4 | 29* | 88* | 4.3 | |
Cr/MSS-4 | 2:08:08 | 600 | 5.4 | 27* | 88* | 2.6 | |
5СrOy/Сe0.5Zr0.5O2/SiO2_wet | 1:02 | 675 | 3.6 | 38 | 77 | — | [ |
1Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 3.6 | 87.9 | 1.5 | [ |
2Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 20.2 | 93.5 | 4.1 | |
3Cr-Ca/ZrO2 | 1:03:06 | 550 | 5 | 12.1 | 90.1 | 3.3 | |
2Cr-ZrO2 | 1:03:06 | 550 | 5 | 17 | 88.2 | 6 | |
2Cr/10Fe-CeO2 | 0.212847222 | 510 | 60 | 2.9* | 80* | — | [ |
7Cr-ZrO2 | 1:02:37 | 550 | 6 | 68 | 60* | 37* | [ |
c-2.5CZ | 2.5:6.5:91 | 550 | 6 | 26 | 69* | 13 | [ |
m-2.5CZ | 2.5:6.5:91 | 550 | 6 | 42 | 60* | 23 | |
c-5CZ | 2.5:6.5:91 | 550 | 6 | 41 | 63* | 24 | |
m-5CZ | 2.5:6.5:91 | 550 | 6 | 58 | 52* | 42 | |
c-10CZ | 2.5:6.5:91 | 550 | 6 | 38 | 68* | 17 | |
m-10CZ | 2.5:6.5:91 | 550 | 6 | 36 | 59* | 21 | |
c-15CZ | 2.5:6.5:91 | 550 | 6 | 59 | 58* | 33 | |
m-15CZ | 2.5:6.5:91 | 550 | 6 | 58 | 59* | 35 | |
5Cr/ZrO2 | 1:02:37 | 600 | 6 | 79.8 | 57.6 | 42.7 | [ |
5Cr/Ce0.1Zr0.9O2 | 1:02:37 | 600 | 6 | 75 | 66.7 | 41.6 | |
5Cr/Ce0.2Zr0.8O2 | 1:02:37 | 600 | 6 | 62.6 | 79.4 | 31.2 | |
5Cr/Ce0.3Zr0.7O2 | 1:02:37 | 600 | 6 | 57.9 | 82.4 | 33.8 | |
5Cr/Ce0.5Zr0.5O2 | 1:02:37 | 600 | 6 | 9.7 | 92.9 | 7.9 | |
5Cr/CeO2 | 1:02:37 | 600 | 6 | 20.8 | 79.8 | 11.9 | |
5 wt% Cr/Al2O3 | 0.085833333 | 600 | 60 | 13.6 | 90 | — | [ |
12 Fe2O3/ZrO2 | 1:02:37 | 600 | 6 | 32 | 73 | — | [ |
Fe2O3-19ZrO2 | 01:01.5 | 550 | 1.8 | 10.2 | 89.2 | 7.35 | [ |
Fe2O3-9ZrO2 | 01:01.5 | 550 | 1.8 | 17.6 | 87.8 | 12.5 | |
Fe2O3-4ZrO2 | 01:01.5 | 550 | 1.8 | 38.7 | 85.7 | 27.5 | |
Fe2O3-3ZrO2 | 01:01.5 | 550 | 1.8 | 39.9 | 83.7 | 28.2 | |
Fe2O3-2ZrO2 | 01:01.5 | 550 | 1.8 | 40.8 | 85.1 | 30.8 | |
Fe2O3-1ZrO2 | 01:01.5 | 550 | 1.8 | 36.3 | 88.5 | 25.7 | |
Fe2O3 | 01:01.5 | 550 | 1.8 | 29.3 | 90.5 | 24.2 | |
FeCr50 | 37:37:26 | 550 | 4.5 | 14.2 | 71 | — | [ |
Fe0.67Ce0.5O2 | 2:02:06 | 700 | 6 | 42.2 | 37.4 | 51.3 | [ |
15FeCeO2 | 0.212847222 | 550 | 6 | 21.5 | 45* | 28* | [ |
FeNi/Ceria-Vo-R | 2.4:4.8:10 | 550 | 1 | 25.2 | 49 | — | [ |
ZnFe2Ox/S-1 | 1:01:04 | 580 | 7.2 | 38* | 97* | 19* | [ |
2V-Fe/KIT-6 | 1:04:05 | 580 | 6 | 37.8 | 87 | 18.5 | [ |
5Fe-5V-Al2O3 | 0.636226852 | 600 | 7.5 | 41.3 | 84.4 | 31* | [ |
7 Ga/SiO2(A) | 1:02 | 600 | 1.8 | 33 | 84 | — | [ |
5% Ga/HZSM-5 | 1:01:08 | 600 | 90 | 25* | 50* | — | [ |
8Ga2O3/SiO2 | 2.5:2.5:60 | 600 | 3.9 | 37* | 93* | — | [ |
ALD-3C (2.9%Ga) | 0.22650463 | 600 | 4.5 | 38 | 82 | — | [ |
Ga4.0SiBEA | 2.5:15:82.5 | 600 | 9 | 57.5 | 64 | — | [ |
5-GaN/Q-3 | 1:02:07 | 600 | 9 | 31 | 93 | — | [ |
5GaN/NaZSM-5(470) | 1:02:07 | 600 | 9 | 45 | 63* | — | [ |
5GaN/KIT-6 | 1:02:07 | 600 | 9 | 24* | 95* | 5* | [ |
5GaN/2000-Fe-silicalite-1 | 1.5:3:25.5 | 600 | 9 | 45* | 78* | 6* | [ |
V-La-MSNS | 1:02:07 | 550 | 6 | 37* | 79* | — | [ |
0.5Cu-10VOx/S-1 | 01:01.5 | 600 | 1.8 | 36 | 90 | 22 | [ |
AlVO7B | 1:01 | 650 | 18 | 62* | 55* | 22* | [ |
20 CeVO4/AC | 1:01:01 | 550 | 6 | 8.5 | 57 | — | [ |
3.4V/In | 2.5:2.5:95 | 540 | 18 | 4.2* | 67* | — | [ |
3.4V/In-S | 2.5:2.5:95 | 540 | 18 | 6.5* | 65* | — | [ |
5.2V-MSNSs | 1:04:04 | 600 | 4.5 | 58* | 83* | — | [ |
6.8V-MCM-41 | 1:04:04 | 600 | 4.5 | 57* | 90* | — | [ |
VOx/SiO2 | 1:01:06 | 600 | 16 | 5.8* | 99* | — | [ |
Co/S-1-HTS | 2.5:2.5:95 | 550 | 24 | 60* | 98* | — | [ |
20%ZnO-ZrO2 | 4:20:01 | 550 | 6 | 18* | 76* | — | [ |
Zn/Mo-Zr-10 | 1:02 | 550 | 7.2 h‒1 | 29.5 | 80 | 12 | [ |
12% In/HZSM-5 | 1:04 | 580 | 6 | 13.3 | 78.9 | 6.34 | [ |
Fig. 15. The structural reconstruction of iron oxide enhances the catalyst coking resistance. Adopted with permission from Ref. [225]. Copyright 2023, Elsevier.
Fig. 16. (Left) O-Mo terminated (110) surface of the NiMoO4 catalyst in CO2 and N2O atmospheres and (right) fully O-terminated surface in an O2 atmosphere. Color code: oxygen-red, nickel-green, molybdenum-grey. Adopted with permission from Ref. [233]. Copyright 2017, Royal Society of Chemistry.
Catalyst | Feed ratio (C4:CO2:inert gas) | Temp. (°C) | WHSV (L g-1 h-1) | XC4 (%) | SC4 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
Fe/S-1-H | 1:1:1 | 600 | 2.1 | 18.7 | 53.4 | 11.7 | [ |
Fe/S-1-E | 1:1:1 | 600 | 2.1 | 17.8 | 52.5 | 11.2 | |
Fe/S-1-E-EDA | 1:1:1 | 600 | 2.1 | 21.3 | 53.4 | 17.9 | |
Fe/S-1-H-EDA | 1:1:1 | 600 | 2.1 | 16.6 | 48.4 | 7.3 | |
Li-Fe2O3/Al2O3 | 1:9 | 600 | 18 | 52* | 29* | — | [ |
15MFO/N-C | 1:3 | 580 | 6000 h-1 | 20* | 90* | — | [ |
Fe2O3 | 1:4:15 | 550 | 9.6 | 14* | 52* | 14* | [ |
Fe4/CeO2 | 1:2:17 | 600 | 24 | 7.0 | 13.5 | 10.5 | [ |
Ni1Fe3/CeO2 | 1:2:17 | 600 | 24 | 11.9 | 21.4 | 18.7 | |
Ni3Fe1/CeO2 | 1:2:17 | 600 | 24 | 30.9 | 0.3 | 59.3 | |
Ni1Fe3/ZrO2 | 1:2:17 | 600 | 24 | 15.8 | 3.7 | 35.1 | |
Ni1Fe3/CeO2-ZrO2 | 1:2:17 | 600 | 24 | 13.9 | 27.4 | 21.7 | |
Ni1Fe3/CeO2+Ni1Fe3/ZrO2 | 1:2:17 | 600 | 24 | 14.5 | 7.5 | 28.3 | |
FeVCrOx/10%ZnCl2/Al2O3 | 1:9 | 600 | 18 | 81.1 | 49 | 10.2 | [ |
Fe2O3/Meso-CeAl-100 | 1:9 | 600 | 18 | 85 | 51 | 14 | [ |
Meso-FeAl | 1:9 | 600 | 18 | 73* | 24* | 1.8* | [ |
20 wt% FeCaAlOx | 1:9 | 600 | 18 | 82 | 34 | 7 | [ |
20 wt% FeCrAlOx | 1:9 | 600 | 18 | 80 | 34 | 10 | |
PtMn/SiO2 | 1:1:8 | 500 | 24 | 36 | 99* | — | [ |
Ni-Mo/Al2O3 | 1:2 | 450 | 6000 h-1 | 7.5 | 45 | — | [ |
5%Cr-SiO2 | 1:6 | 600 | 12.6 | 82.2 | 41.9 | — | [ |
3Cr-3Ce/SBA | 1:5 | 570 | 2.3 | 35.4 | 89.6 | 7.1 | [ |
10%CrOx/Ce0.5Zr0.5O2 | 1:2:7 | 550 | 6 | 37* | 65* | — | [ |
ZnO/S-1-0.08 | 1:1 | 570 | 3.5 | 44.3 | 81.7 | 5.5 | [ |
ZnO/S-1-0.35 | 1:1 | 570 | 3.5 | 49.0 | 79.4 | 7.2 | |
ZnO/S-1-1 | 1:1 | 570 | 3.5 | 41.4 | 82.6 | 4.6 | |
ZnO/S-1-1.7 | 1:1 | 570 | 3.5 | 36.4 | 83.0 | 2.7 | |
1%ZnO/S-1 | 1:1 | 570 | 3.5 | 22.6 | 78.3 | 2.7 | [ |
2%ZnO/S-1 | 1:1 | 570 | 3.5 | 37.7 | 80.4 | 3.8 | |
3%ZnO/S-1 | 1:1 | 570 | 3.5 | 44.1 | 80.7 | 4.2 | |
5%ZnO/S-1 | 1:1 | 570 | 3.5 | 49.0 | 79.4 | 7.2 | |
9%ZnO/S-1 | 1:1 | 570 | 3.5 | 50.7 | 77.1 | 7.3 | |
5%ZnO/SBA | 1:1 | 570 | 3.5 | 17.6 | 72.7 | 2.0 |
Table 4 Summary of the catalytic performance of various metal-based catalysts used in oxidative dehydrogenation of butane/butene with CO2.
Catalyst | Feed ratio (C4:CO2:inert gas) | Temp. (°C) | WHSV (L g-1 h-1) | XC4 (%) | SC4 (%) | XCO2 (%) | Ref. |
---|---|---|---|---|---|---|---|
Fe/S-1-H | 1:1:1 | 600 | 2.1 | 18.7 | 53.4 | 11.7 | [ |
Fe/S-1-E | 1:1:1 | 600 | 2.1 | 17.8 | 52.5 | 11.2 | |
Fe/S-1-E-EDA | 1:1:1 | 600 | 2.1 | 21.3 | 53.4 | 17.9 | |
Fe/S-1-H-EDA | 1:1:1 | 600 | 2.1 | 16.6 | 48.4 | 7.3 | |
Li-Fe2O3/Al2O3 | 1:9 | 600 | 18 | 52* | 29* | — | [ |
15MFO/N-C | 1:3 | 580 | 6000 h-1 | 20* | 90* | — | [ |
Fe2O3 | 1:4:15 | 550 | 9.6 | 14* | 52* | 14* | [ |
Fe4/CeO2 | 1:2:17 | 600 | 24 | 7.0 | 13.5 | 10.5 | [ |
Ni1Fe3/CeO2 | 1:2:17 | 600 | 24 | 11.9 | 21.4 | 18.7 | |
Ni3Fe1/CeO2 | 1:2:17 | 600 | 24 | 30.9 | 0.3 | 59.3 | |
Ni1Fe3/ZrO2 | 1:2:17 | 600 | 24 | 15.8 | 3.7 | 35.1 | |
Ni1Fe3/CeO2-ZrO2 | 1:2:17 | 600 | 24 | 13.9 | 27.4 | 21.7 | |
Ni1Fe3/CeO2+Ni1Fe3/ZrO2 | 1:2:17 | 600 | 24 | 14.5 | 7.5 | 28.3 | |
FeVCrOx/10%ZnCl2/Al2O3 | 1:9 | 600 | 18 | 81.1 | 49 | 10.2 | [ |
Fe2O3/Meso-CeAl-100 | 1:9 | 600 | 18 | 85 | 51 | 14 | [ |
Meso-FeAl | 1:9 | 600 | 18 | 73* | 24* | 1.8* | [ |
20 wt% FeCaAlOx | 1:9 | 600 | 18 | 82 | 34 | 7 | [ |
20 wt% FeCrAlOx | 1:9 | 600 | 18 | 80 | 34 | 10 | |
PtMn/SiO2 | 1:1:8 | 500 | 24 | 36 | 99* | — | [ |
Ni-Mo/Al2O3 | 1:2 | 450 | 6000 h-1 | 7.5 | 45 | — | [ |
5%Cr-SiO2 | 1:6 | 600 | 12.6 | 82.2 | 41.9 | — | [ |
3Cr-3Ce/SBA | 1:5 | 570 | 2.3 | 35.4 | 89.6 | 7.1 | [ |
10%CrOx/Ce0.5Zr0.5O2 | 1:2:7 | 550 | 6 | 37* | 65* | — | [ |
ZnO/S-1-0.08 | 1:1 | 570 | 3.5 | 44.3 | 81.7 | 5.5 | [ |
ZnO/S-1-0.35 | 1:1 | 570 | 3.5 | 49.0 | 79.4 | 7.2 | |
ZnO/S-1-1 | 1:1 | 570 | 3.5 | 41.4 | 82.6 | 4.6 | |
ZnO/S-1-1.7 | 1:1 | 570 | 3.5 | 36.4 | 83.0 | 2.7 | |
1%ZnO/S-1 | 1:1 | 570 | 3.5 | 22.6 | 78.3 | 2.7 | [ |
2%ZnO/S-1 | 1:1 | 570 | 3.5 | 37.7 | 80.4 | 3.8 | |
3%ZnO/S-1 | 1:1 | 570 | 3.5 | 44.1 | 80.7 | 4.2 | |
5%ZnO/S-1 | 1:1 | 570 | 3.5 | 49.0 | 79.4 | 7.2 | |
9%ZnO/S-1 | 1:1 | 570 | 3.5 | 50.7 | 77.1 | 7.3 | |
5%ZnO/SBA | 1:1 | 570 | 3.5 | 17.6 | 72.7 | 2.0 |
|
[1] | Xuke Sun, Rongsheng Liu, Gaili Fan, Yuhan Liu, Fangxiu Ye, Zhengxi Yu, Zhongmin Liu. Understanding the correlation between zinc speciation and coupling conversion of CO2 and n-butane on zinc/ZSM-5 catalysts [J]. Chinese Journal of Catalysis, 2024, 61(6): 154-163. |
[2] | Yamei Gan, Tiantian Chai, Jian Zhang, Cong Gao, Wei Song, Jing Wu, Liming Liu, Xiulai Chen. Light-driven CO2 utilization for chemical production in bacterium biohybrids [J]. Chinese Journal of Catalysis, 2024, 60(5): 294-303. |
[3] | Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction [J]. Chinese Journal of Catalysis, 2024, 57(2): 1-17. |
[4] | Zhe Wang, Chunpeng Wang, Bing Lu, Zhirong Chen, Yong Wang, Shanjun Mao. Electronic perturbation-promoted interfacial pathway for facile C-H dissociation [J]. Chinese Journal of Catalysis, 2024, 56(1): 130-138. |
[5] | Changcheng Wei, Wenna Zhang, Kuo Yang, Xiu Bai, Shutao Xu, Jinzhe Li, Zhongmin Liu. An efficient way to use CO2 as chemical feedstock by coupling with alkanes [J]. Chinese Journal of Catalysis, 2023, 47(4): 138-149. |
[6] | Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis [J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056. |
[7] | Hehe Wei, Xiaoyang Li, Bohan Deng, Jialiang Lang, Ya Huang, Xingyu Hua, Yida Qiao, Binghui Ge, Jun Ge, Hui Wu. Rapid synthesis of Pd single-atom/cluster as highly active catalysts for Suzuki coupling reactions [J]. Chinese Journal of Catalysis, 2022, 43(4): 1058-1065. |
[8] | Teera Chantarojsiri, Tassaneewan Soisuwan, Pornwimon Kongkiatkrai. Toward green syntheses of carboxylates: Considerations of mechanisms and reactions at the electrodes for electrocarboxylation of organohalides and alkenes [J]. Chinese Journal of Catalysis, 2022, 43(12): 3046-3061. |
[9] | Sixue Lin, Jing Wang, Yangyang Mi, Senyou Yang, Zheng Wang, Wenming Liu, Daishe Wu, Honggen Peng. Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming [J]. Chinese Journal of Catalysis, 2021, 42(10): 1808-1820. |
[10] | Zheng-Qing Huang, Teng-Hao Li, Bolun Yang, Chun-Ran Chang. Role of surface frustrated Lewis pairs on reduced CeO2(110) in direct conversion of syngas [J]. Chinese Journal of Catalysis, 2020, 41(12): 1906-1915. |
[11] | Jieya Wen, Lili Ling, Yao Chen, Zhenfeng Bian. Pyroelectricity effect on photoactivating palladium nanoparticles in PbTiO3 for Suzuki coupling reaction [J]. Chinese Journal of Catalysis, 2020, 41(10): 1674-1681. |
[12] | Ruqun Guan, Xiaoming Zhang, Fangfang Chang, Nan Xue, Hengquan Yang. Incorporation of flexible ionic polymers into a Lewis acid-functionalized mesoporous silica for cooperative conversion of CO2 to cyclic carbonates [J]. Chinese Journal of Catalysis, 2019, 40(12): 1874-1883. |
[13] | Pengwei Wang, Xin Zhang, Guofeng Zhao, Ye Liu, Yong Lu. Oxidative coupling of methane: MOx-modified (M=Ti, Mg, Ga, Zr) Mn2O3-Na2WO4/SiO2 catalysts and effect of MOx modification [J]. Chinese Journal of Catalysis, 2018, 39(8): 1395-1402. |
[14] | Haipeng Fan, Zhengliang Qi, Dejun Sui, Fei Mao, Rizhi Chen, Jun Huang. Palladium nanoparticles in cross-linked polyaniline as highly efficient catalysts for Suzuki-Miyaura reactions [J]. Chinese Journal of Catalysis, 2017, 38(3): 589-596. |
[15] | Shayan Miar Alipour . Recent advances in naphtha catalytic cracking by nano ZSM-5: A review [J]. Chinese Journal of Catalysis, 2016, 37(5): 671-680. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||