Chinese Journal of Catalysis ›› 2024, Vol. 65: 174-184.DOI: 10.1016/S1872-2067(24)60108-7
• Article • Previous Articles Next Articles
Chunxue Lia, Hao Lub, Guixiang Dingc, Tianyi Mad, Shiyong Liue, Li Zhangf,*(), Guangfu Liaoc,*(
)
Received:
2024-06-04
Accepted:
2024-07-22
Online:
2024-10-18
Published:
2024-10-15
Contact:
*E-mail: lzhang535-c@my.cityu.edu.hk (L. Zhang), liaogf@mail2.sysu.edu.cn (G. Liao).
Supported by:
Chunxue Li, Hao Lu, Guixiang Ding, Tianyi Ma, Shiyong Liu, Li Zhang, Guangfu Liao. Interfacial coordination bonds accelerate charge separation for unprecedented hydrogen evolution over S-scheme heterojunction[J]. Chinese Journal of Catalysis, 2024, 65: 174-184.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60108-7
Fig. 1. (a) Synthesis of the NMT/ZCS/NiS photocatalyst. TEM images of ZCS (b), NiS (c), ZCS/2% NiS (yellow circle represents ZCS, red circle represents NiS) (d), NMT (e), and 30% NMT/ZCS/2% NiS (purple circle represents NMT) (f). (g) HRTEM image of 30% NMT/ZCS/2% NiS. (h) Dark field TEM image of 30% NMT/ZCS/2% NiS.
Fig. 2. XPS survey of Zn 2p (a), Cd 3d (b), N 1s (c) and Ti 2p (d). The corresponding line profiles of surface potential in the dark (e) and in the light (f).
Fig. 3. 2D transient absorption surface plots of ZCS (a), ZCS/2% NiS (b), and 30% NMT/ZCS/2% NiS (c). Transient absorption signals of ZCS (d), ZCS/2% NiS (e), and 30% NMT/ZCS/2% NiS (f). Fs-TAS kinetics probed at approximately 675 nm for ZCS (g), ZCS/2% NiS (h), and 30% NMT/ZCS/2% NiS (i).
Fig. 4. (a) PHE rates of various samples. (b) AQY over 30% NMT/2% NiS/ZCS. (c) TPR spectra. (d) EIS spectra. (e) PL spectra. (f) TRPL spectra. (g) Comparison of PHE activity with previously reported MOFs-based photocatalysts.
Fig. 5. Calculated band structure of ZCS (a), and NMT (b). (c) Plots of (αhv)2 versus (hv). (d) Valence band XPS spectra of materials. Electrostatic potentials of ZCS (001) surface (e) and NMT (001) surface (f) along the Z-axis direction. UPS spectra of ZCS (g) and NMT (h). DOS of ZCS (i), ZCS/NiS (j), and NMT (k). (l) ΔG*H values of ZCS, ZCS/2% NiS, and 30% NMT/ZCS/2% NiS.
|
[1] | Xinyue Li, Haili Lin, Xuemei Jia, Shifu Chen, Jing Cao. An S-scheme heterojunction engineered with spatially separated dual active groups for simultaneously photocatalytic CO2 reduction and ciprofloxacin oxidation [J]. Chinese Journal of Catalysis, 2025, 73(6): 205-221. |
[2] | Tengfei Cao, Quanlong Xu, Jun Zhang, Shenggao Wang, Tingmin Di, Quanrong Deng. S-scheme g-C3N4/BiOBr heterojunction for efficient photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2025, 72(5): 118-129. |
[3] | Yong-Hui Wu, Yu-Qing Yan, Yi-Xiang Deng, Wei-Ya Huang, Kai Yang, Kang-Qiang Lu. Rational construction of S-scheme CdS quantum dots/In2O3 hollow nanotubes heterojunction for enhanced photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2025, 70(3): 333-340. |
[4] | Mingyang Xu, Zhenzhen Li, Rongchen Shen, Xin Zhang, Zhihong Zhang, Peng Zhang, Xin Li. Constructing S-scheme heterojunction between porphyrinyl covalent organic frameworks and Nb2C MXene for photocatalytic H2O2 production [J]. Chinese Journal of Catalysis, 2025, 70(3): 431-443. |
[5] | Bingquan Xia, Gaoxiong Liu, Kun Fan, Rundong Chen, Xin Liu, Laiquan Li. Boosting hydrogen peroxide photosynthesis via a 1D/2D S-scheme heterojunction constructed by a covalent triazine framework with dual O2 reduction centers [J]. Chinese Journal of Catalysis, 2025, 69(2): 315-326. |
[6] | Shijie Li, Changjun You, Fang Yang, Guijie Liang, Chunqiang Zhuang, Xin Li. Interfacial Mo-S bond modulated S-scheme Mn0.5Cd0.5S/Bi2MoO6 heterojunction for boosted photocatalytic removal of emerging organic contaminants [J]. Chinese Journal of Catalysis, 2025, 68(1): 259-271. |
[7] | Baofei Hao, Younes Ahmadi, Jan Szulejko, Tianhao Zhang, Zhansheng Lu, Ki-Hyun Kim. The design and fabrication of TiO2/Bi4O5Br2 step-scheme heterojunctions for the photodegradation of gaseous hydrogen sulfide: DFT calculation, kinetics, pathways, and mechanisms [J]. Chinese Journal of Catalysis, 2025, 68(1): 282-299. |
[8] | Fangxuan Liu, Bin Sun, Ziyan Liu, Yingqin Wei, Tingting Gao, Guowei Zhou. Vacancy engineering mediated hollow structured ZnO/ZnS S-scheme heterojunction for highly efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 64(9): 152-165. |
[9] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
[10] | Yanyan Zhao, Chunyan Yang, Shumin Zhang, Guotai Sun, Bicheng Zhu, Linxi Wang, Jianjun Zhang. Investigating the charge transfer mechanism of ZnSe QD/COF S-scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy [J]. Chinese Journal of Catalysis, 2024, 63(8): 258-269. |
[11] | Fulin Wang, Xiangwei Li, Kangqiang Lu, Man Zhou, Changlin Yu, Kai Yang. Molten salt construction of core-shell structured S-scheme CuInS2@CoS2 heterojunction to boost charge transfer for efficient photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 63(8): 190-201. |
[12] | Qiqi Zhang, Hui Miao, Jun Wang, Tao Sun, Enzhou Liu. Self-assembled S-scheme In2.77S4/K+-doped g-C3N4 photocatalyst with selective O2 reduction pathway for efficient H2O2 production using water and air [J]. Chinese Journal of Catalysis, 2024, 63(8): 176-189. |
[13] | Miaoli Gu, Yi Yang, Bei Cheng, Liuyang Zhang, Peng Xiao, Tao Chen. Unveiling product selectivity in S-scheme heterojunctions: Harnessing charge separation for tailored photocatalytic oxidation [J]. Chinese Journal of Catalysis, 2024, 59(4): 185-194. |
[14] | Baolong Zhang, Fangxuan Liu, Bin Sun, Tingting Gao, Guowei Zhou. Hierarchical S-scheme heterojunctions of ZnIn2S4-decorated TiO2 for enhancing photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 334-345. |
[15] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||