Chinese Journal of Catalysis ›› 2024, Vol. 65: 174-184.DOI: 10.1016/S1872-2067(24)60108-7
• Article • Previous Articles Next Articles
Chunxue Lia, Hao Lub, Guixiang Dingc, Tianyi Mad, Shiyong Liue, Li Zhangf,*(), Guangfu Liaoc,*()
Received:
2024-06-04
Accepted:
2024-07-22
Online:
2024-10-18
Published:
2024-10-15
Contact:
*E-mail: lzhang535-c@my.cityu.edu.hk (L. Zhang), liaogf@mail2.sysu.edu.cn (G. Liao).
Supported by:
Chunxue Li, Hao Lu, Guixiang Ding, Tianyi Ma, Shiyong Liu, Li Zhang, Guangfu Liao. Interfacial coordination bonds accelerate charge separation for unprecedented hydrogen evolution over S-scheme heterojunction[J]. Chinese Journal of Catalysis, 2024, 65: 174-184.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60108-7
Fig. 1. (a) Synthesis of the NMT/ZCS/NiS photocatalyst. TEM images of ZCS (b), NiS (c), ZCS/2% NiS (yellow circle represents ZCS, red circle represents NiS) (d), NMT (e), and 30% NMT/ZCS/2% NiS (purple circle represents NMT) (f). (g) HRTEM image of 30% NMT/ZCS/2% NiS. (h) Dark field TEM image of 30% NMT/ZCS/2% NiS.
Fig. 2. XPS survey of Zn 2p (a), Cd 3d (b), N 1s (c) and Ti 2p (d). The corresponding line profiles of surface potential in the dark (e) and in the light (f).
Fig. 3. 2D transient absorption surface plots of ZCS (a), ZCS/2% NiS (b), and 30% NMT/ZCS/2% NiS (c). Transient absorption signals of ZCS (d), ZCS/2% NiS (e), and 30% NMT/ZCS/2% NiS (f). Fs-TAS kinetics probed at approximately 675 nm for ZCS (g), ZCS/2% NiS (h), and 30% NMT/ZCS/2% NiS (i).
Fig. 4. (a) PHE rates of various samples. (b) AQY over 30% NMT/2% NiS/ZCS. (c) TPR spectra. (d) EIS spectra. (e) PL spectra. (f) TRPL spectra. (g) Comparison of PHE activity with previously reported MOFs-based photocatalysts.
Fig. 5. Calculated band structure of ZCS (a), and NMT (b). (c) Plots of (αhv)2 versus (hv). (d) Valence band XPS spectra of materials. Electrostatic potentials of ZCS (001) surface (e) and NMT (001) surface (f) along the Z-axis direction. UPS spectra of ZCS (g) and NMT (h). DOS of ZCS (i), ZCS/NiS (j), and NMT (k). (l) ΔG*H values of ZCS, ZCS/2% NiS, and 30% NMT/ZCS/2% NiS.
|
[1] | Fangxuan Liu, Bin Sun, Ziyan Liu, Yingqin Wei, Tingting Gao, Guowei Zhou. Vacancy engineering mediated hollow structured ZnO/ZnS S-scheme heterojunction for highly efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 64(9): 152-165. |
[2] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
[3] | Yanyan Zhao, Chunyan Yang, Shumin Zhang, Guotai Sun, Bicheng Zhu, Linxi Wang, Jianjun Zhang. Investigating the charge transfer mechanism of ZnSe QD/COF S-scheme photocatalyst for H2O2 production by using femtosecond transient absorption spectroscopy [J]. Chinese Journal of Catalysis, 2024, 63(8): 258-269. |
[4] | Fulin Wang, Xiangwei Li, Kangqiang Lu, Man Zhou, Changlin Yu, Kai Yang. Molten salt construction of core-shell structured S-scheme CuInS2@CoS2 heterojunction to boost charge transfer for efficient photocatalytic CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 63(8): 190-201. |
[5] | Qiqi Zhang, Hui Miao, Jun Wang, Tao Sun, Enzhou Liu. Self-assembled S-scheme In2.77S4/K+-doped g-C3N4 photocatalyst with selective O2 reduction pathway for efficient H2O2 production using water and air [J]. Chinese Journal of Catalysis, 2024, 63(8): 176-189. |
[6] | Miaoli Gu, Yi Yang, Bei Cheng, Liuyang Zhang, Peng Xiao, Tao Chen. Unveiling product selectivity in S-scheme heterojunctions: Harnessing charge separation for tailored photocatalytic oxidation [J]. Chinese Journal of Catalysis, 2024, 59(4): 185-194. |
[7] | Baolong Zhang, Fangxuan Liu, Bin Sun, Tingting Gao, Guowei Zhou. Hierarchical S-scheme heterojunctions of ZnIn2S4-decorated TiO2 for enhancing photocatalytic H2 evolution [J]. Chinese Journal of Catalysis, 2024, 59(4): 334-345. |
[8] | Jinkang Pan, Aicaijun Zhang, Lihua Zhang, Pengyu Dong. Construction of S-scheme heterojunction from protonated D-A typed polymer and MoS2 for efficient photocatalytic H2 production [J]. Chinese Journal of Catalysis, 2024, 58(3): 180-193. |
[9] | Cheng Yang, Xin Li, Mei Li, Guijie Liang, Zhiliang Jin. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 88-103. |
[10] | Lijuan Sun, Xiaohui Yu, Liyong Tang, Weikang Wang, Qinqin Liu. Hollow dodecahedron K3PW12O40/CdS core-shell S-scheme heterojunction for photocatalytic synergistic H2 evolution and benzyl alcohol oxidation [J]. Chinese Journal of Catalysis, 2023, 52(9): 164-175. |
[11] | Mingming Song, Xianghai Song, Xin Liu, Weiqiang Zhou, Pengwei Huo. Enhancing photocatalytic CO2 reduction activity of ZnIn2S4/MOF-808 microsphere with S-scheme heterojunction by in situ synthesis method [J]. Chinese Journal of Catalysis, 2023, 51(8): 180-192. |
[12] | Lijuan Sun, Weikang Wang, Ping Lu, Qinqin Liu, Lele Wang, Hua Tang. Enhanced photocatalytic hydrogen production and simultaneous benzyl alcohol oxidation by modulating the Schottky barrier with nano high-entropy alloys [J]. Chinese Journal of Catalysis, 2023, 51(8): 90-100. |
[13] | Houwei He, Zhongliao Wang, Kai Dai, Suwen Li, Jinfeng Zhang. LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction [J]. Chinese Journal of Catalysis, 2023, 48(5): 267-278. |
[14] | Han Li, Shanren Tao, Sijie Wan, Guogen Qiu, Qing Long, Jiaguo Yu, Shaowen Cao. S-scheme heterojunction of ZnCdS nanospheres and dibenzothiophene modified graphite carbon nitride for enhanced H2 production [J]. Chinese Journal of Catalysis, 2023, 46(3): 167-176. |
[15] | Zhijie Zhang, Xuesheng Wang, Huiling Tang, Deben Li, Jiayue Xu. Modulation of Fermi level gap and internal electric field over Cs3Bi2Br9@VO-In2O3 S-scheme heterojunction for boosted charge separation and CO2 photoconversion [J]. Chinese Journal of Catalysis, 2023, 55(12): 227-240. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||