Chinese Journal of Catalysis ›› 2024, Vol. 67: 21-53.DOI: 10.1016/S1872-2067(24)60153-1
• Review • Previous Articles Next Articles
Yingjie Guoa,b, Shilong Lia,b, Wasihun Abebeb, Jingyang Wangb, Lei Shib(), Di Liua(
), Shenlong Zhaob,c(
)
Received:
2024-07-02
Accepted:
2024-09-24
Online:
2024-11-30
Published:
2024-11-30
Contact:
Lei Shi, Di Liu, Shenlong Zhao
About author:
Lei Shi (National Center for Nanoscience and Technology) received his Ph.D. degree from Beijing University of Chemical Technology in 2022. Currently, He is a postdoctoral fellow in National Center for Nanoscience and Technology. His research interests focus on the MOF and COF-based nanomaterials for water electrolysis, electrochemical CO2 reduction and small molecule electrooxidation.Supported by:
Yingjie Guo, Shilong Li, Wasihun Abebe, Jingyang Wang, Lei Shi, Di Liu, Shenlong Zhao. Non-derivatized metal-organic framework nanosheets for water electrolysis: Fundamentals, regulation strategies and recent advances[J]. Chinese Journal of Catalysis, 2024, 67: 21-53.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60153-1
Fig. 1. Main progress of MOFNSs for water electrolysis. Reproduced with permission from Ref. [25]. Copyright 2015, American Chemical Society; Ref. [26]. Copyright 2016, Nature Publishing Group; Ref. [16]. Copyright 2017, Nature Publishing Group; Ref. [151]. Copyright 2018, Wiley-VCH; Ref. [130]. Copyright 2019, Wiley-VCH; Ref. [18]. Copyright 2020, Nature Publishing Group; Ref. [132]. Copyright 2021, Nature Publishing Group; Ref. [115]. Copyright 2022, Nature Publishing Group; Ref. [50]. Copyright 2023, Wiley-VCH.
Fig. 2. Schematic diagram of the OER reaction path proposed in the previous study in alkaline: (A) AEM; (B) LOM; (C) OPM. (D) Volmer-Tafel and Volmer-Heyrovsky mechanisms of HER in alkaline and acidic condition. (E) Volcano plot of exchange current density as a function of the DFT-calculated Gibb's free energy (ΔGH*) of the adsorbed atomic hydrogen on a pure metal. Reproduced with permission from Ref. [41]. Copyright 2018, Royal Society of Chemistry.
Fig. 3. (A) Schematic diagram of technical principle. Reproduced with permission from Ref. [48]. Copyright 2022, Multidisciplinary Digital Publishing Institute. (B) Single-atom contrast in the range Z = 1-103 obtained by simulations iDPC-STEM image. Reproduced with permission from Ref. [49]. Copyright 2016, Elsevier. (C) IDPC-STEM images and GPA of Ni-BDC. Reproduced with permission from Ref. [50]. Copyright 2023, Wiley-VCH. (D) Simultaneous detection of SAXS and WAXS. (E) GIWAXS of UiO-66 on UiO-67 heterostructures. Reproduced with permission from Ref. [53]. Copyright 2023, Wiley-VCH. SAXS (F) and EXAFS (G) characterization of NiCo-UMOFNs. Reproduced with permission from Ref. [26]. Copyright 2016, Nature Publishing Group. (H) Schematic illustration of electrocatalytic water splitting. Reproduced with permission from Ref. [33]. Copyright 2020, Royal Society of Chemistry. (I) Typical polarization curves for HER (left) and OER (right). Reproduced with permission from Ref. [54]. Copyright 2017, Wiley-VCH.
Fig. 4. (A) In situ probing map of various representative in situ techniques. Reproduced with permission from Ref. [73]. Copyright 2020, American Chemical Society. Schema of in-situ Raman spectroscopy (B), in-situ mass spectroscopy (C), in-situ X-ray absorption spectroscopy (D), and in-situ transmission electron microscopy (E). Reproduced with permission from Ref. [76]. Copyright 2020, Royal Society of Chemistry. (F) Enhancing the connection between computation and experiments in electrocatalysis. Reproduced with permission from Ref. [79]. Copyright 2022, Nature Publishing Group. (G) Information theoretic methods in DFT and applications to chemical problems. Reproduced with permission from Ref. [80]. Copyright 2020, Wiley-VCH.
Fig. 5. (A) Operando SR-FTIR measurements of 4.3%-MOF at different potentials. (B) FTIR signal at 1048 cm-1 and Ni4+/Ni2+ ratio versus potential during ORR and OER. Reproduced with permission from Ref. [81]. Copyright 2019, Nature Publishing Group. (C) In situ FTIR spectra of bulk CuBDC at 150 °C. Reproduced with permission from Ref. [82]. Copyright 2024, Wiley-VCH. (D) Electrochemical in situ Raman spectra of Ni0.9Fe0.1-MOF and Ni-MOF in the range of 350-700 cm−1 at operated potentials from 1.1 to 1.67 V vs. RHE. Reproduced with permission from Ref. [83]. Copyright 2022, Elsevier. (E) Ni K-edge Fourier-transformed k3-weighted EXAFS signals recorded at different potentials in 1 mol L-1 KOH. (F) comparison of Ni K-edge EXAFS WTs recorded for the pristine sample, standard references and catalytic materials at 1.1, 1.3 and 1.5?V. Reproduced with permission from Ref. [18]. Copyright 2020, Nature Publishing Group.
Fig. 6. (A) Different metal nodes in the MOF crystal structure. Reproduced with permission from Ref. [91]. Copyright 2021, Wiley-VCH. (B) Strategies to construct stable MOFs guided by HSAB theory. Reproduced with permission from Ref. [92]. Copyright 2018, Wiley-VCH.
Fig. 7. Synthesis (A), molecular and crystal structure schematic diagrams (B) and Co 2p XPS spectrum (C) of ultrathin 2D Co-MOF nanosheet catalysts. Reproduced with permission from Ref. [89]. Copyright 2018, Royal Society of Chemistry. (D) Synthesis. AFM (E) and S 2p XPS spectrum (F) of the 2DSP single-layer sheet. Reproduced with permission from Ref. [93]. Copyright 2015, Wiley-VCH. (G) Scheme of the cobalt dithiolene films. Reproduced with permission from Ref. [94]. Copyright 2015, American Chemical Society. (H) Schematic illustration, synthesis and photograph of the structure of the 2D coordination polymers. Reproduced with permission from Ref. [95]. Copyright 2017, American Chemical Society. (I) Surfactant-assisted phase-selective synthesis of new cobalt MOFs. Reproduced with permission from Ref. [96]. Copyright 2017, Wiley-VCH.
Fig. 8. Crystal structure (A) and AFM image (B) of NiCo-UMOFNs. (C) Schematic representation of the electronic coupling between Co and Ni in UMOFNs. Reproduced with permission from Ref. [26]. Copyright 2016, Nature Publishing Group. (D) Schematic illustration of the 2D oxide sacrifice approach conversion of M-ONS with 2,5-dihydroxyterephthalic acid to form M-MNS. Reproduced with permission from Ref. [90]. Copyright 2019, Wiley-VCH. (E) Comparison of the overpotentials required for 10 mA cm-2 for substituted M (M = Fe, Co, Cu, Mn, and Zn) in Ni-MOFs. Reproduced with permission from Ref. [98]. Copyright 2021, Wiley-VCH.
Fig. 9. (A) Formation process of FeCo2Ni-MOF-74 at ambient temperature. (B) Catalytical reaction circle and active sites for FeCo2Ni-MOF-74 with rich Ovac. (C) DOS for various materials. Reproduced with permission from Ref. [99]. Copyright 2021, Elsevier. (D) Schematic illustration of microwave-assisted synthesis of ultrathin trimetal-organic framework nanosheets, (Reproduced with permission from Ref. [100]. Copyright 2021, Elsevier. Synthetic process (E), HRTEM image (scale bar is 5 nm) (F) and AFM image and corresponding height profile (G) of the 2D HE-MOFs array. (H) The overpotential testing at a current density of 50 mA cm-2 of overall samples under 1.0 mol L-1 KOH. Reproduced with permission from Ref. [101]. Copyright 2022, American Chemical Society.
Fig. 10. (A) Schematic illustration of 2D Co-MOFs with different organic ligands. (B) Bader charge transfer and magnetic moments of Co sites in different 2D Co-MOFs. Reproduced with permission from Ref. [106]. Copyright 2023, American Chemical Society. (C) Structural modelling of FeNi-MOFs modulated by halogen atoms. (D) Calculated PDOS and Ni-3d band center. (E) Ni K-edge XANES spectra. Reproduced with permission from Ref. [107]. Copyright 2024, Wiley-VCH. (F) Schematic representation for the formation of the self-supporting 2D Ni-MOF nanosheet electrode. Reproduced with permission from Ref. [110]. Copyright 2022, American Chemical Society. (G) 2D planar structure of Ni-MOF. Reproduced with permission from Ref. [114]. Copyright 2023, American Chemical Society.
Fig. 11. (A) HRTEM (top) and SEM (bottom) images of the pristine 1.7%-, 3.6%- and 4.3%-MOFs. (B) Fourier transforms of the Ni K-edge EXAFS spectra. Reproduced with permission from Ref. [81]. Copyright 2019, Nature Publishing Group. (C) Schematic illustration of the NaBH4 defect post-treatment. (D) DOS and the corresponding structures (inset) of Co-MOF and Co-MOF-VO. (E) Charge density mapping at [010] facet. Reproduced with permission from Ref. [118]. Copyright 2020, Wiley-VCH. (F) Electronic structure of MOF is regulated by a missing linker. Reproduced with permission from Ref. [119]. Copyright 2020, Wiley-VCH. (G) Modulating electronic structure and DOS of MOFs via introducing missing linkers. Reproduced with permission from Ref. [120]. Copyright 2019, Nature Publishing Group.
Fig. 12. (A) Schematic illustration of the formation of flexible lattice matching junction in MOF-on-MOF epitaxy. Reproduced with permission from Ref. [124]. Copyright 2014, American Chemical Society. (B) A representation of the combinations of three distinctive processes of MOF-on-MOF growth. Reproduced with permission from Ref. [125]. Copyright 2020, Wiley-VCH. (C) Illustration of the Synthesis Process of the FePc@Ni-MOF composite nanosheets. Reproduced with permission from Ref. [128]. Copyright 2021, American Chemical Society. (D) Hierarchical Ni3S2@2D Co MOF nanosheets as efficient hetero-electrocatalyst for hydrogen evolution reaction in alkaline solution. Reproduced with permission from Ref. [129]. Copyright 2022, Elsevier. (E) Schematic of the synthesis process for Co-BDC/MoS2 hybrid nanosheets. Reproduced with permission from Ref. [130]. Copyright 2019, Wiley-VCH. (F) Schematic illustration for the preparation of NiRu0.13-BDC catalyst. Reproduced with permission from Ref. [132]. Copyright 2021, Nature Publishing Group.
Fig. 13. (A) Models of optimized NiBDC and S-NiBDC. (B) Structure of active site for [FeFe]-hydrogenase, (C) PDOS of p-states for NiBDC and S-NiBDC models. (D) Polarization curves of S-NiBDC and Pt/C. (E) FESEM images of S-NiBDC after HER tests at different current densities. (F) In-situ Raman spectra of S-NiBDC at −0.3 V vs. RHE for different times. (G) In-situ ATR-FTIR spectra of S-NiBDC with the potential of 0 to −0.4?V vs. RHE. (H) Polarization curves of S-NiBDC in 1.0 mol L-1 NaOH H2O solution and 1.0 mol L-1 NaOD D2O solution. Reproduced with permission from Ref. [135]. Copyright 2022, Nature Publishing Group.
Number | Catalyst | η@10 mA cm-2/mV | Tafel slope/mV dec−1 | Condition | Stability | Ref. |
---|---|---|---|---|---|---|
1 | Ni3(Ni3·HAHATN)2 | 115 | 45.6 | 0.1 mol L−1 KOH | 1000 cycles | [113] |
2 | Co MOF/H2 | 30 | 88 | 1.0 mol L−1 KOH | 40 h@10 mA cm-2 | [140] |
3 | AB&CTGU-5 | 44 | 45 | 0.5 mol L−1 H2SO4 | 96 h@10 mA cm-2 | [96] |
4 | [Cu(2,5-pydc)(H2O)]n·2H2O | 340 | 70 | 1.0 mol L−1 KOH | 1000 cycles | [138] |
5 | NiFe-MOF-74 | 195 | 136 | 1.0 mol L−1 KOH | 5000 cycles | [141] |
6 | Ni3S2@2D Co-MOF/CP | 140 | 90.3 | 1.0 mol L−1 KOH | 2000 cycles | [129] |
7 | THTNi 2DSP | 333 | 80.5 | 0.5 mol L−1 H2SO4 | — | [93] |
8 | FePc@Ni-MOF | 334 | 72.1 | 0.1 mol L−1 KOH | 10 h@10 mA cm-2 | [128] |
9 | Pt-NC/Ni-MOF | 25 | 42.1 | 1.0 mol L−1 KOH | 10000 cycles | [142] |
10 | 2D Ni-MOF@Pt | 43 | 30 | 0.5 mol L−1 H2SO4 | — | [143] |
11 | MoS2/Co-MOF-3 | 262 | 51 | 0.5 mol L−1 H2SO4 | 25000 s@10 mA cm-2 | [137] |
12 | UiO-66-NH2-Mo/GC | 125 | 59 | 0.5 mol L−1 H2SO4 | 5000 cycles | [144] |
13 | THTA-Co | 283 | 71 | 0.5 mol L−1 H2SO4 | 400 cycles | [145] |
14 | 3ZIF-67-Pt/RGO | 14.3 | 12.5 | 0.5 mol L−1 H2SO4 | 1000 cycles | [146] |
15 | 3ZIF-67-Pt/RGO | 37.2 | 33.1 | 1.0 mol L−1 KOH | 1000 cycles | [146] |
16 | NiFe-MOF array | 68 | 112 | 1.0 mol L−1 KOH | 22 h@~550 mA cm-2 | [103] |
17 | AB&Co-Cl4-MOF(3:4) | 283 | 86 | 1.0 mol L−1 KOH | 1000 cycles | [136] |
18 | NiRu-MOF/NF | 51 | 90 | 1.0 mol L−1 KOH | 5000 cycles | [148] |
19 | D-Ni-MOF | 101 | 50.9 | 1.0 mol L−1 KOH | 1000 cycles | [120] |
20 | Co-BDC/MoS2 | 248 | 86 | 1.0 mol L−1 KOH | 2000 cycles | [130] |
21 | Fe(OH)x@Cu-MOF | 112 | 76 | 1.0 mol L−1 KOH | 30 h@10 mA cm-2 | [139] |
22 | Ce-MOF@Pt-0.05 | 208 | 188.1 | 1.0 mol L−1 KOH | 3,000 cycles | [149] |
23 | CoP/Co-MOF | 52 | 44 | 0.5 mol L−1 H2SO4 | 20 h@20 mA cm-2 | [131] |
24 | S-NiBDC | 100 | 75 | 1.0 mol L−1 KOH | 150 h@1000 mA cm-2 | [135] |
25 | IF@CoFe-TDPAT NSA | 212.2 | 76.7 | 1.0 mol L−1 KOH | 24 h@300 mA cm-2 | [147] |
Table 1 MOFNSs for electrocatalytic HER in recent years.
Number | Catalyst | η@10 mA cm-2/mV | Tafel slope/mV dec−1 | Condition | Stability | Ref. |
---|---|---|---|---|---|---|
1 | Ni3(Ni3·HAHATN)2 | 115 | 45.6 | 0.1 mol L−1 KOH | 1000 cycles | [113] |
2 | Co MOF/H2 | 30 | 88 | 1.0 mol L−1 KOH | 40 h@10 mA cm-2 | [140] |
3 | AB&CTGU-5 | 44 | 45 | 0.5 mol L−1 H2SO4 | 96 h@10 mA cm-2 | [96] |
4 | [Cu(2,5-pydc)(H2O)]n·2H2O | 340 | 70 | 1.0 mol L−1 KOH | 1000 cycles | [138] |
5 | NiFe-MOF-74 | 195 | 136 | 1.0 mol L−1 KOH | 5000 cycles | [141] |
6 | Ni3S2@2D Co-MOF/CP | 140 | 90.3 | 1.0 mol L−1 KOH | 2000 cycles | [129] |
7 | THTNi 2DSP | 333 | 80.5 | 0.5 mol L−1 H2SO4 | — | [93] |
8 | FePc@Ni-MOF | 334 | 72.1 | 0.1 mol L−1 KOH | 10 h@10 mA cm-2 | [128] |
9 | Pt-NC/Ni-MOF | 25 | 42.1 | 1.0 mol L−1 KOH | 10000 cycles | [142] |
10 | 2D Ni-MOF@Pt | 43 | 30 | 0.5 mol L−1 H2SO4 | — | [143] |
11 | MoS2/Co-MOF-3 | 262 | 51 | 0.5 mol L−1 H2SO4 | 25000 s@10 mA cm-2 | [137] |
12 | UiO-66-NH2-Mo/GC | 125 | 59 | 0.5 mol L−1 H2SO4 | 5000 cycles | [144] |
13 | THTA-Co | 283 | 71 | 0.5 mol L−1 H2SO4 | 400 cycles | [145] |
14 | 3ZIF-67-Pt/RGO | 14.3 | 12.5 | 0.5 mol L−1 H2SO4 | 1000 cycles | [146] |
15 | 3ZIF-67-Pt/RGO | 37.2 | 33.1 | 1.0 mol L−1 KOH | 1000 cycles | [146] |
16 | NiFe-MOF array | 68 | 112 | 1.0 mol L−1 KOH | 22 h@~550 mA cm-2 | [103] |
17 | AB&Co-Cl4-MOF(3:4) | 283 | 86 | 1.0 mol L−1 KOH | 1000 cycles | [136] |
18 | NiRu-MOF/NF | 51 | 90 | 1.0 mol L−1 KOH | 5000 cycles | [148] |
19 | D-Ni-MOF | 101 | 50.9 | 1.0 mol L−1 KOH | 1000 cycles | [120] |
20 | Co-BDC/MoS2 | 248 | 86 | 1.0 mol L−1 KOH | 2000 cycles | [130] |
21 | Fe(OH)x@Cu-MOF | 112 | 76 | 1.0 mol L−1 KOH | 30 h@10 mA cm-2 | [139] |
22 | Ce-MOF@Pt-0.05 | 208 | 188.1 | 1.0 mol L−1 KOH | 3,000 cycles | [149] |
23 | CoP/Co-MOF | 52 | 44 | 0.5 mol L−1 H2SO4 | 20 h@20 mA cm-2 | [131] |
24 | S-NiBDC | 100 | 75 | 1.0 mol L−1 KOH | 150 h@1000 mA cm-2 | [135] |
25 | IF@CoFe-TDPAT NSA | 212.2 | 76.7 | 1.0 mol L−1 KOH | 24 h@300 mA cm-2 | [147] |
Fig. 14. (A) Illustration of the synthesis of bulk, 3D, and 2D MOFs. iR-corrected polarization curves for OER (B) and corresponding Tafel plots derived from the LSV curves (C). Reproduced with permission from Ref. [150]. Copyright 2021, Wiley-VCH. (D) Schematic illustration of the preparation of MOFNSs. (E) Coordination structure of CuBDC before and after thermal treatment and liquid nitrogen exfoliation. (F) SEM image of bulk CuBDC and 2D CuBDC after thermal treatment and liquid nitrogen exfoliation, Characterization of OER catalytic activity of different materials. Linear sweep voltametric curves and Tafel plots of bulk CuBDC and CuBDC-5 (G) and bulk NiBDC and NiBDC-5 (H). Reproduced with permission from Ref. [82]. Copyright 2024, Wiley-VCH.
Number | Catalyst | η@10 mA cm-2/mV | Tafel slope/mV dec−1 | Condition | Stability | Ref. |
---|---|---|---|---|---|---|
1 | Co3(HITP)2 | 254 | 86.5 | 1.0 mol L-1 KOH | 12 h@16 mA cm-2 | [162] |
2 | NiCo-UMOFNs | 250 | 42 | 1.0 mol L-1 KOH | 200 h@10 mA cm-2 | [26] |
3 | FeCo-MNS-1.0 | 298 | 21.6 | 0.1 mol L-1 KOH | 10000 s@~22 mA cm-2 | [90] |
4 | NiFe-MOF | 215 | 49.1 | 1.0 mol L-1 KOH | 40 h@10 mA cm-2 | [98] |
5 | FeCo2Ni-MOF-74 | 254 | 21.4 | 0.1 mol L-1KOH | 100 h@10 mA cm-2 | [99] |
6 | MW-Ni4Co4Fe2-UMOFNs | 243 | 48.1 | 1.0 mol L-1 KOH | 10 h@12 mA cm-2 | [100] |
7 | UNi-MOFNs-2 | 170 | 41 | 1.0 mol L-1 KOH | 3,000 cycles | [110] |
8 | NiFe-MOF NSs | 240 | 73.44 | 1.0 mol L-1 KOH | 16 h@10 mA cm-2 | [111] |
9 | Fe:2D-Co-NS@Ni | 211 | 46 | 0.1 mol L-1 KOH | 95 h@10 mA cm-2 | [86] |
10 | Ni-BPDC | 415 | 83 | 1.0 mol L-1 KOH | 20000 s@5 mA cm-2 | [114] |
11 | Ni-MOF | 370 | 101.9 | 0.1 mol L-1 KOH | 1000 cycles | [153] |
12 | Co-ZIF-9(III) | 380 | 55 | 1.0 mol L-1 KOH | 10 h@15 mA cm-2 | [85] |
13 | Ni-Fe-MOF | 221 | 56 | 1.0 mol L-1 KOH | 20 h@10 mA cm-2 | [154] |
14 | NiFe-UMNs | 260 | 30 | 1.0 mol L-1 KOH | 10000 s@60 mA cm-2 | [155] |
15 | Ni-MOF@Fe-MOF | 265 | 82 | 1.0 mol L-1 KOH | — | [151] |
16 | 2D CoFe-MOF | 355 | 49.05 | 0.1 mol L-1 KOH | 15 h@20 mA cm-2 | [156] |
17 | CoFe MOFNSs | 276 | 46.7 | 1.0 mol L-1 KOH | — | [157] |
18 | CoFe-MOF-OH | 265 | 44 | 1.0 mol L-1 KOH | 40 h@10 mA cm-2 | [158] |
19 | TMOF-4 | 318 | 54 | 1.0 mol L-1 KOH | 15 h@20 mA cm-2 | [159] |
20 | CoNi-MOF/rGO | 318 | 48 | 1.0 mol L-1 KOH | 50 h@10 mA cm-2 | [160] |
21 | CoBDC-Fc0.17 | 178 | 61 | 1.0 mol L-1 KOH | 80 h@100 mA cm-2 | [119] |
22 | CoNi(1:1)-MOF | 265 | 56 | 1.0 mol L-1 KOH | 20 h@25 mA cm-2 | [161] |
23 | IF@CoFe-TDPAT NSA | 226.4 | 30.8 | 1.0 mol L-1 KOH | 24 h@300 mA cm-2 | [147] |
Table 2 MOFNSs for electrocatalytic OER in recent years.
Number | Catalyst | η@10 mA cm-2/mV | Tafel slope/mV dec−1 | Condition | Stability | Ref. |
---|---|---|---|---|---|---|
1 | Co3(HITP)2 | 254 | 86.5 | 1.0 mol L-1 KOH | 12 h@16 mA cm-2 | [162] |
2 | NiCo-UMOFNs | 250 | 42 | 1.0 mol L-1 KOH | 200 h@10 mA cm-2 | [26] |
3 | FeCo-MNS-1.0 | 298 | 21.6 | 0.1 mol L-1 KOH | 10000 s@~22 mA cm-2 | [90] |
4 | NiFe-MOF | 215 | 49.1 | 1.0 mol L-1 KOH | 40 h@10 mA cm-2 | [98] |
5 | FeCo2Ni-MOF-74 | 254 | 21.4 | 0.1 mol L-1KOH | 100 h@10 mA cm-2 | [99] |
6 | MW-Ni4Co4Fe2-UMOFNs | 243 | 48.1 | 1.0 mol L-1 KOH | 10 h@12 mA cm-2 | [100] |
7 | UNi-MOFNs-2 | 170 | 41 | 1.0 mol L-1 KOH | 3,000 cycles | [110] |
8 | NiFe-MOF NSs | 240 | 73.44 | 1.0 mol L-1 KOH | 16 h@10 mA cm-2 | [111] |
9 | Fe:2D-Co-NS@Ni | 211 | 46 | 0.1 mol L-1 KOH | 95 h@10 mA cm-2 | [86] |
10 | Ni-BPDC | 415 | 83 | 1.0 mol L-1 KOH | 20000 s@5 mA cm-2 | [114] |
11 | Ni-MOF | 370 | 101.9 | 0.1 mol L-1 KOH | 1000 cycles | [153] |
12 | Co-ZIF-9(III) | 380 | 55 | 1.0 mol L-1 KOH | 10 h@15 mA cm-2 | [85] |
13 | Ni-Fe-MOF | 221 | 56 | 1.0 mol L-1 KOH | 20 h@10 mA cm-2 | [154] |
14 | NiFe-UMNs | 260 | 30 | 1.0 mol L-1 KOH | 10000 s@60 mA cm-2 | [155] |
15 | Ni-MOF@Fe-MOF | 265 | 82 | 1.0 mol L-1 KOH | — | [151] |
16 | 2D CoFe-MOF | 355 | 49.05 | 0.1 mol L-1 KOH | 15 h@20 mA cm-2 | [156] |
17 | CoFe MOFNSs | 276 | 46.7 | 1.0 mol L-1 KOH | — | [157] |
18 | CoFe-MOF-OH | 265 | 44 | 1.0 mol L-1 KOH | 40 h@10 mA cm-2 | [158] |
19 | TMOF-4 | 318 | 54 | 1.0 mol L-1 KOH | 15 h@20 mA cm-2 | [159] |
20 | CoNi-MOF/rGO | 318 | 48 | 1.0 mol L-1 KOH | 50 h@10 mA cm-2 | [160] |
21 | CoBDC-Fc0.17 | 178 | 61 | 1.0 mol L-1 KOH | 80 h@100 mA cm-2 | [119] |
22 | CoNi(1:1)-MOF | 265 | 56 | 1.0 mol L-1 KOH | 20 h@25 mA cm-2 | [161] |
23 | IF@CoFe-TDPAT NSA | 226.4 | 30.8 | 1.0 mol L-1 KOH | 24 h@300 mA cm-2 | [147] |
Fig. 15. (A) Schematic preparation of Ru@Cr-FeMOF. (B) Schematic diagram of the mechanism of the Cr-O-Ru interface regulating the orbitals of ruthenium nanoclusters. (C) LSV polarization curves with Ru@Cr-FeMOF||Ru@Cr-FeMOF electrodes and Pt/C||RuO2 electrodes. (D) Comparison of total water splitting performance between Ru@Cr-FeMOF and reported catalysts. Reproduced with permission from Ref. [152]. Copyright 2024, Wiley-VCH. (E) Schematic representation of synthesis procedure. (F) Voltages of water splitting electrolyzer at different current densities (10-500 mA cm−2). (G) J-V curves of silicon solar cell under simulated AM 1.5G 100 mW cm−2 illumination with water photolysis. Reproduced with permission from Ref. [103]. Copyright 2021, Elsevier.
Number | Catalyst | ηOER@10 mA cm-2/mV | ηHER@10 mA cm-2/mV | Condition | Cell Voltage | Stability | Ref. |
---|---|---|---|---|---|---|---|
1 | NiFe-MOF-74 | 208 | 195 | 1.0 mol L-1 KOH | 1.65 V@20 mA cm-2 | 3000 cycles | [141] |
2 | D-Ni-MOF | 219 | 101 | 1.0 mol L-1 KOH | 1.63 V@100 mA cm-2 | 48 h@100 mA cm-2 | [120] |
3 | NiFe-MOF array | 215 | 68 | 1.0 mol L-1 KOH | 1.87 V@500 mA cm-2 | 30 h@~17 mA cm-2 | [103] |
4 | NiFe-MOF | 240 | 134 | 0.1 mol L-1 KOH | 1.55 V@10 mA cm-2 | 20 h@~12 mA cm-2 | [16] |
5 | CoNi(1:1)-MOF | 265 | 120 | 1.0 mol L-1 KOH | 1.48 V@10 mA cm-2 | 80000 s@20 mA cm-2 | [161] |
6 | BP@MOF | 266 | 88 | 1.0 mol L-1 KOH | 1.63 V@10 mA cm-2 | 10 h@12 mA cm-2 | [163] |
7 | Ni0.3Co0.7-9AC-AD | 350 | 143 | 1.0 mol L-1 KOH | 1.56 V@10 mA cm-2 | 30 h@~12 mA cm-2 | [164] |
8 | Ni2V-MOFs@NF | 244 | 89 | 1.0 mol L-1 KOH | 1.55 V@10 mA cm-2 | 80 h@10 mA cm-2 | [165] |
9 | Ni@CoO@CoMOFC | 247 | 138 | 1.0 mol L-1 KOH | 1.61 V@10 mA cm-2 | 24 h@50 mA cm-2 | [166] |
10 | CoFe-PBA NS@NF-24 | 256 | 48 | 1.0 mol L-1 KOH | 1.545 V@10 mA cm-2 | 36 h@100 mA cm-2 | [167] |
11 | NiFe-MS/MOF@NF | 290 | 90 | 1.0 mol L-1 KOH | 1.61 V@10 mA cm-2 | 27 h@50 mA cm-2 | [168] |
12 | NH2-MIL-88B(Fe2Ni)/NF | 240 | 87 | 1.0 mol L-1 KOH | 1.56 V@10 mA cm-2 | 30 h@500 mA cm-2 | [169] |
13 | Ru@Cr-FeMOF | 190 | 21 | 1.0 mol L-1 KOH | 1.48 V@10 mA cm-2 | 80000 s@20 mA cm-2 | [152] |
14 | IF@CoFe-TDPAT NSA | 226.4 | 212.2 | 1.0 mol L-1 KOH | 1.43 V@10 mA cm-2 | 100 h@300 mA cm-2 | [147] |
Table 3 MOFNSs for electrocatalytic water splitting in recent years.
Number | Catalyst | ηOER@10 mA cm-2/mV | ηHER@10 mA cm-2/mV | Condition | Cell Voltage | Stability | Ref. |
---|---|---|---|---|---|---|---|
1 | NiFe-MOF-74 | 208 | 195 | 1.0 mol L-1 KOH | 1.65 V@20 mA cm-2 | 3000 cycles | [141] |
2 | D-Ni-MOF | 219 | 101 | 1.0 mol L-1 KOH | 1.63 V@100 mA cm-2 | 48 h@100 mA cm-2 | [120] |
3 | NiFe-MOF array | 215 | 68 | 1.0 mol L-1 KOH | 1.87 V@500 mA cm-2 | 30 h@~17 mA cm-2 | [103] |
4 | NiFe-MOF | 240 | 134 | 0.1 mol L-1 KOH | 1.55 V@10 mA cm-2 | 20 h@~12 mA cm-2 | [16] |
5 | CoNi(1:1)-MOF | 265 | 120 | 1.0 mol L-1 KOH | 1.48 V@10 mA cm-2 | 80000 s@20 mA cm-2 | [161] |
6 | BP@MOF | 266 | 88 | 1.0 mol L-1 KOH | 1.63 V@10 mA cm-2 | 10 h@12 mA cm-2 | [163] |
7 | Ni0.3Co0.7-9AC-AD | 350 | 143 | 1.0 mol L-1 KOH | 1.56 V@10 mA cm-2 | 30 h@~12 mA cm-2 | [164] |
8 | Ni2V-MOFs@NF | 244 | 89 | 1.0 mol L-1 KOH | 1.55 V@10 mA cm-2 | 80 h@10 mA cm-2 | [165] |
9 | Ni@CoO@CoMOFC | 247 | 138 | 1.0 mol L-1 KOH | 1.61 V@10 mA cm-2 | 24 h@50 mA cm-2 | [166] |
10 | CoFe-PBA NS@NF-24 | 256 | 48 | 1.0 mol L-1 KOH | 1.545 V@10 mA cm-2 | 36 h@100 mA cm-2 | [167] |
11 | NiFe-MS/MOF@NF | 290 | 90 | 1.0 mol L-1 KOH | 1.61 V@10 mA cm-2 | 27 h@50 mA cm-2 | [168] |
12 | NH2-MIL-88B(Fe2Ni)/NF | 240 | 87 | 1.0 mol L-1 KOH | 1.56 V@10 mA cm-2 | 30 h@500 mA cm-2 | [169] |
13 | Ru@Cr-FeMOF | 190 | 21 | 1.0 mol L-1 KOH | 1.48 V@10 mA cm-2 | 80000 s@20 mA cm-2 | [152] |
14 | IF@CoFe-TDPAT NSA | 226.4 | 212.2 | 1.0 mol L-1 KOH | 1.43 V@10 mA cm-2 | 100 h@300 mA cm-2 | [147] |
|
[1] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO2 electroreduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 66-76. |
[2] | Hao Dai, Tao Song, Xian Yue, Shuting Wei, Fuzhi Li, Yanchao Xu, Siyan Shu, Ziang Cui, Cheng Wang, Jun Gu, Lele Duan. Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO2 electroreduction to CH4 [J]. Chinese Journal of Catalysis, 2024, 64(9): 123-132. |
[3] | Minfei Xie, Xing Ji, Huaying Meng, Nanbing Jiang, Zhenyu Luo, Qianqian Huang, Geng Sun, Yunhuai Zhang, Peng Xiao. The role of titanium at the interface of hematite photoanode in multisite mechanism: Reactive site or cocatalyst site? [J]. Chinese Journal of Catalysis, 2024, 64(9): 77-86. |
[4] | Chengguang Lang, Yantong Xu, Xiangdong Yao. Perfecting HER catalysts via defects: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2024, 64(9): 4-31. |
[5] | Yunying Huo, Cong Guo, Yongle Zhang, Jingyi Liu, Qiao Zhang, Zhiting Liu, Guangxing Yang, Rengui Li, Feng Peng. Realizing efficient electrochemical oxidation of 5-hydroxymethylfurfural on a freestanding Ni(OH)2/nickel foam catalyst [J]. Chinese Journal of Catalysis, 2024, 63(8): 282-291. |
[6] | Jiayong Xiao, Chao Jiang, Hui Zhang, Zhuo Xing, Ming Qiu, Ying Yu. Amorphous core-shell NiMoP@CuNWs rod-like structure with hydrophilicity feature for efficient hydrogen production in neutral media [J]. Chinese Journal of Catalysis, 2024, 63(8): 154-163. |
[7] | Qinghui Ren, Liang Xu, Mengyu Lv, Zhiyuan Zhang, Zhenhua Li, Mingfei Shao, Xue Duan. Cation effects in electrocatalytic reduction reactions: Recent advances [J]. Chinese Journal of Catalysis, 2024, 63(8): 16-32. |
[8] | Zhipeng Li, Xiaobin Liu, Qingping Yu, Xinyue Qu, Jun Wan, Zhenyu Xiao, Jingqi Chi, Lei Wang. Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review [J]. Chinese Journal of Catalysis, 2024, 63(8): 33-60. |
[9] | Haruka Yamamoto, Langqiu Xiao, Yugo Miseki, Hiroto Ueki, Megumi Okazaki, Kazuhiro Sayama, Thomas E. Mallouk, Kazuhiko Maeda. Is platinum-loaded titania the best material for dye-sensitized hydrogen evolution under visible light? [J]. Chinese Journal of Catalysis, 2024, 63(8): 124-132. |
[10] | Xinyu Chen, Cong-Cong Zhao, Jing Ren, Bo Li, Qianqian Liu, Wei Li, Fan Yang, Siqi Lu, YuFei Zhao, Li-Kai Yan, Hong-Ying Zang. An oxygen-vacancy-rich polyoxometalate-aided Ag-based heterojunction electrocatalyst for nitrogen fixation [J]. Chinese Journal of Catalysis, 2024, 62(7): 209-218. |
[11] | Shujiao Yang, Pengfei Jiang, Kaihang Yue, Kai Guo, Luna Yang, Jinxiu Han, Xinyang Peng, Xuepeng Zhang, Haoquan Zheng, Tao Yang, Rui Cao, Ya Yan, Wei Zhang. Manganese pyrophosphate with multiple coordinated water molecules for electrocatalytic water oxidation [J]. Chinese Journal of Catalysis, 2024, 62(7): 166-177. |
[12] | Hong-Rui Zhu, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Qi-Ni Zhan, Ting-Yu Shuai, Gao-Ren Li. Recent advances of the catalysts for photoelectrocatalytic oxygen evolution and CO2 reduction reactions [J]. Chinese Journal of Catalysis, 2024, 62(7): 53-107. |
[13] | Zhenlin Chen, Jing Xue, Lei Wu, Kun Dang, Hongwei Ji, Chuncheng Chen, Yuchao Zhang, Jincai Zhao. Synergistic photoelectric and thermal effect for efficient nitrate reduction on plasmonic Cu photocathodes [J]. Chinese Journal of Catalysis, 2024, 62(7): 219-230. |
[14] | Qing Liu, Xue-Feng Cheng, Jin-Yan Huo, Xiao-Fang Liu, Huilong Dong, Hongbo Zeng, Qing-Feng Xu, Jian-Mei Lu. Manipulating the interactions between N-intermediates and one-dimensional conjugated coordination polymers to boost electroreduction of nitrate to ammonia [J]. Chinese Journal of Catalysis, 2024, 62(7): 231-242. |
[15] | Xiao Chen, Yunmei Du, Yu Yang, Kang Liu, Jinling Zhao, Xiaodan Xia, Lei Wang. Quenching to optimize the crystalline/amorphous ratio of CoPS nanorods for hydrazine-assisted total water decomposition at ampere-level current density [J]. Chinese Journal of Catalysis, 2024, 62(7): 265-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||