• Review • Next Articles
Krishnan Athiraa,*, Archana K.b, Arsha A. S.b, Viswam Amrithab, Meera M. S.b
Received:
2024-08-13
Accepted:
2024-09-25
Contact:
* E-mail: athikrishnan91@gmail.com (A. Krishnan).
About author:
Dr. Athira Krishnan currently working as Assistant Professor at Govt. Polytechnic College, Punalur, Kollam, Kerala. She was assistant professor at Govt. College Chittur, Palakkad (2023 Jun‒2023 Aug) and at Amrita Vishwa Vidyapeetham, Amritapuri (2014‒2023). She has received her B.Sc (2011) & M.Sc (2013) in Chemistry with first rank, from Kerala University. She has completed her doctoral degree from Amrita Vishwa Vidyapeetham in 2020. She has ten years of research experience in the design and development of transition metal based catalytic materials and fabrication of cost-effective catalytic electrode for hydrogen evolution reaction. Her research mainly focused on developing non-precious catalytic electrodes for HER via electro and photocatalytic water splitting process. She has published ~30 journal articles (Else-vier, Wiley, ACS, RSC, Springer) and eight book chapters (Elsevier, Wiley, Springer & Bentham publications). She has contributed as a reviewer for ~20 journals (Elsevier, ACS, Springer, Wiley, RSC). She has expertise in preparing nanomaterials (0D, 1D and 2D), doped materials and composites. She has also worked with polymer composites for electro and photocatalytic hydrogen production. More than 20 B.SC/M.Sc/M.Phil submitted thesis under her guidance. Her research interest includes Electro/photocatalysis, Nanomaterials, Energy materials & corrosion science.
Krishnan Athira, Archana K., Arsha A. S., Viswam Amritha, Meera M. S.. Divulging the potential role of wide band gap semiconductors in electro and photo catalytic water splitting for green hydrogen production[J]. Chinese Journal of Catalysis, DOI: 10.1016/S1872-2067(24)60156-7.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60156-7
[1] A. Krishnan, S. M.Aboobakar Shibli, Ind. Eng. Chem. Res., 2018, 57, 16217-16226. [2] Q. Liu, Y. Zhao, J. Wang, Y. Zhou, X. Liu,Crit. Rev. Environ. Sci. Technol., 2024, 54, 909-930. [3] A. Krishnan, M. Yoosuf, K. Archana, A. S. Arsha, A. Viswam, J. Energy Chem., 2023, 80, 562-583. [4] H. Wu, L. Li, S. Wang, N. Zhu, Z. Li, L. Zhao and Y. Wang, Phys. Chem. Chem. Phys., 2023, 25, 25899. [5] A. Krishnan, M. A. Sha, R. Basheer, A. H. Riyas, S. M. A.Shibli, Mater. Sci. Semicond. Process., 2020, 116, 105138. [6] A. Krishnan, S. M. A.Shibli, J. Ind. Eng. Chem., 2020, 87, 198-212. [7] W. Cai, F. Zhang, Y. Wang, D. Li,Inorg. Chem. Commun., 2021, 134, 109046. [8] A. Kazemi, F. Manteghi, Z. Tehrani, ACS Omega, 2024, 9, 7310-7335. [9] L. Miao, W. Jia, X. Cao, L. Jiao,Chem. Soc. Rev., 2024, 53, 2771-2807. [10] A. Krishnan, T. C. Bhagya, S. M. A.Shibli, Appl. Surf. Sci., 2020, 507, 145093. [11] J. M. Yu, J. Lee, Y. S. Kim, J. Song, J. Oh, S. M. Lee, M. Jeong, Y. Kim, J. H. Kwak, S. Cho, C. Yang,Nat. Commun., 2020, 11, 5509. [12] A. El. Idrissi, M. Arab, M. Zbair, H. Haspel, M. Saadi, H. A. Ahsaine, Int. J. Hydrogen Energy, 2024, 51, 1044-1067. [13] M. Arumugam, H. H. Yang, J. CO2 Util., 2024, 83,102808. [14] G. A. Sundaram, G. R. Muniyandi, J. Ethiraj, V. Parimelazhagan, A. S. Kumar,Chem. Eng., 2024, 8(2), 36. [15] Y. Wang, F. Silveri, M. K. Bayazit, Q. Ruan, Y. Li, J. Xie, C. R. A.Catlow, J. Tang, Adv. Energy Mater., 2018, 8, 1801084. [16] P. Gowdhaman, J. Environ. Nanotechnol., 2018, 7, 37-40. [17] T. Wang, J. Cao, J. Li, J. Li, D. Li, S. Wang, Z. Ao, Environ. Sci. Nano, 2024, 11, 2415-2427. [18] S. Li, W. Xu, L. Meng, W. Tian, L. Li,Small Sci., 2022, 2, 2100112. [19] Q. Zhou, S. Liu, Y. Zhang, Z. Zhu, W. Su, M. Sheng,Ceram. Int., 2020, 46, 20871-20877. [20] F. Bobi, V. C. Menzel, K. Jeronimo, A. Arora, Y. Zhang, T. P. Comyn, P. Cowin, C. Kirk, N. Robertson, Electrochim. Acta, 2023, 462, 142730. [21] M. A. Qadeer, X. Zhang, M. A. Farid, M. Tanveer, Y. Yan, S. Du, Z. F. Huang, M. Tahir, J. J. Zou, J. Power Sources, 2024, 613, 234856. [22] A. Krishnan, S. Viswanath, A. C. Mohan, R. Panchami, P. V. Vishwanathan, J. Environ. Chem.Eng., 2021, 9, 105300. [23] E. Roduner,Catal. Today., 2018, 309, 263-268. [24] O. van der Heijden, S. Park, R. E. Vos, J. J. J. Eggebeen, M. T. M. Koper, ACS Energy Lett., 2024, 9, 1871-1879. [25] T. Shinagawa, A. T.Garcia-Esparza, K. Takanabe, Sci. Rep., 2015, 5, 13801. [26] W. Choi, J. Y. Choi, H. Song,APL Mater., 2019, 7, 100702. [27] B. Y. Alfaifi, H. Ullah, S. Alfaifi, A. A. Tahir, T. K. Mallick,Veruscript Funct. Nanomater., 2018, 2, 1-26. [28] M. Roeb, N. Gathmann, M. Neises, C. Sattler, R. Pitz-Paal, Int. J. Energy Res., 2009, 33, 893-902. [29] I. Ermanoski, J. E. Miller, M. D. Allendorf,Phys. Chem. Chem. Phys., 2014, 16, 8418-8427. [30] B. Ohtani,Phys. Chem. Chem. Phys., 2014, 16, 1788-1797. [31] Q. Zhang, J. B. Joo, Z. Lu, M. Dahl, D. Q. L.Oliveira, M. Ye, Y. Yin, Nano Res., 2011, 4, 103-114. [32] G. Landi, H. C. Neitzert, C. Barone, C. Mauro, F. Lang, S. Albrecht, B. Rech, S. Pagano,Adv. Sci., 2017, 4, 1700183. [33] N. Serpone, J. Photochem. Photobiol. A, 1997, 104, 1-12. [34] T. Yao, X. An, H. Han, J. Q. Chen, C. Li,Adv. Energy Mater., 2018, 8, 1800210. [35] C. Ding, J. Shi, Z. Wang, C. Li,ACS Catal., 2017, 7, 675-688. [36] A. Krishnan, M. A. Sha, P.C. Meenu, J. S. Jayan, A. Saritha, Int. J. Hydrog. Energy, 2024, 91, 327-342. [37] B. A. Marinho, L. Suhadolnik, B. Likozar, M. Huš, Ž. Marinko, J. Cleaner Prod., 2022, 343, 131061. [38] A. H. Alaydaroos, J. Sydorenko, S. Palanisamy, M. Chiesa, E. Al Hajri, Chemosphere, 2023, 339,139629. [39] L.Zhang, X. Zhang, C. Wei, F. Wang, H. Wang, Z. Bian,Chem. Eng. J., 2022, 435, 134873. [40] Z. Guo, J .Wei, B. Zhang, M. Ruan, Z. Liu, J. Alloys Compd., 2020, 821, 153225. [41] J. Yu, J. Gonzalez-Cobos, F. Dappozze, F. J.Lopez-Tenllado, J. Hidalgo-Carrillo, A. Marinas, P. Vernoux, A. Caravaca, C. Guillard, Appl. Catal. B, 2022, 318, 121843. [42] A. Kuddus, S. K. Mostaque, S. Mouri, J. Hossain,Phys. Scr., 2024, 99, 022001. [43] N. Hariprasad, S. G. Anju, E. P. Yesodharan.Res. J. Mater. Sci., 2013, 1(4), 9-17. [44] W. T. Yao, S. H. Yu,Adv. Funct. Mater., 2008, 18, 3357-3366. [45] J. X. Jian, L. H. Xie, A. Mumtaz, T. Baines, J. D. Major, Q. X. Tong, J. Sun, ACS Appl. Mater. Interfaces, 2023, 15, 21057-21065. [46] A. C. Jones,Semicond. Sci. Technol., 1991, 6, A36-A40. [47] A. C. Jones, P. J. Wright, B. Cockayne, J. Cryst. Growth., 1991, 107, 297-308. [48] P. P. Hankare, P. A. Chate, D. J. Sathe, J. Alloys Compd., 2009, 487, 367-369. [49] G. Korotcenkov, Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors, Springer, Cham, 2023, 21-65. [50] F. Xia, L. Shu, Y. Wen, F. Yang, C. Zhen,Mater. Adv., 2022, 3, 5772-5777. [51] M. P. Mikhailova, K. D. Moiseev, Y. P. Yakovlev, Semiconductors, 2019, 53, 273-290. [52] R. E. Treece, G. S. Macala, L. Rao, D. Franke, H. Eckert, R. B. Kaner,Inorg. Chem., 1993, 32, 2745-2752. [53] T. F. Kuech,Progr. Cryst. Growth Charact. Mater., 2016, 62, 352-370. [54] A. Lipp, K. A. Schwetz, K. Hunold, J. Eur. Ceram.Soc., 1989, 5, 3-9. [55] Y. N. Xu, W. Y. Ching, Phys. Rev. B, 1991, 44, 7787-7798. [56] L. Chen, M. Zhou, Z. Luo, M. Wakeel, A. M. Asiri, X. Wang, Appl. Catal. B, 2019, 241, 246-255. [57] E. A. Albanesi, W. R. L.Lambrecht, B. Segall, J. Vac. Sci. Technol. B, 1994, 12, 2470-2474. [58] S. Singh, T. Chaudhary, G. Khanna, Silicon, 2022, 14, 5793-5800. [59] S. Strite, M. E. Lin, H. Morkoc, Thin Solid Films, 1993, 231, 197-210. [60] M. A. Reshchikov, H. Morkoç, J. Appl. Phys, 2005, 97, 061301. [61] Y. Chen, J. Liu, K. Liu, J. Si, Y. Ding, L. Li, T. Lv, Mater. Sci. Eng. B, 2019, 138, 60-84. [62] S. Strite, H. Morkoc, J. Vac. Sci.Technol. B, 1992, 10, 1237-1266. [63] W. Wang, Y. Zheng, X. Li, Y. Li, H. Zhao, L. Huang, Z. Yang, X. Zhang, G. Li,Adv. Mater., 2019, 31, 1803448. [64] P. Wang, T. Wang, H. Wang, X. Sun, P. Huang, B. Sheng, X. Rong, X. Zheng, Z. Chen, Y. Wang, D. Wang, H. Liu, F. Liu, F, L. Yang, D. Li, L. Chen, X. Yang, F. Xu, Z. Qin, J. Shi, T. Yu, W. Ge, B. Shen, X. Wang, Adv. Funct. Mater., 2019, 29, 1902608. [65] M. H. Tsai, D. W. Jenkins, J. D. Dow, R. V. Kasowski, Phys. Rev. B, 1988, 38, 1541-1543. [66] D. H. Ozbey, M. E. Kilic, E. Durgun,Appl. Surf. Sci., 2023, 638, 157982. [67] Y. Oshima, E. Ahmadi,Appl. Phys. Lett., 2022, 121, 260501. [68] Z. Galazka,Semicond. Sci. Technol., 2018, 33, 113001. [69] J. Zhang, P. Dong, K. Dang, Y. Zhang, Q. Yan, H. Xiang, J. Su, Z. Liu, M. Si, J. Gao, M. Kong,Nat. Commun., 2022, 13, 3900. [70] L. K. Ping, D. D. Berhanuddin, A. K. Mondal, Chin. J. Phys., 2021, 73, 195-212. [71] J. Zhang, J. Shi, D. C. Qi, L. Chen, K. H. L.Zhang, APL Mater., 2020, 8, 020906. [72] F. Guzzetta, C. W. Jellett, J. Azadmanjiri, P. K. Roy, S. Ashtiani, K. Friess, Z. Sofer, Small, 2023, 19, 2206430. [73] H. Cai, Y. Gu, Y. C. Lin, Y. Yu, D. B. Geohegan,Appl. Phys. Rev., 2019, 6, 041312. [74] K. C. Mandal, S. H. Kang, M. Choi, J. Chen, X. C. Zhang, J. M. Schleicher, C. A. Schmuttenmaer, IEEE J. Sel. Top. Quantum Electron., 2008, 14, 284-288. [75] S. Anandan, Y. Ikuma, K. Niwa, Diffus. Defect Data Solid State Data B, 2010, 162, 239-260. [76] H. Eidsvåg, S. Bentouba, P. Vajeeston, S. Yohi, D. Velauthapillai, Molecules, 2021, 26, 1687. [77] R. Li, Y. Weng, X. Zhou, X. Wang, Y. Mi, R. Chong, H. Han, C. Li,Energy Environ. Sci., 2015, 8, 2377-2382. [78] A. Sahu, R. Chaurashiya, K. Hiremath, A. Dixit, Sol. Energy, 2018, 163, 338-346. [79] F. Odobel, Y. Pellegrin, J. Phys. Chem.Lett., 2013, 4, 2551-2564. [80] G. Xiao, Y. Wang, J. Ning, Y. Wei, B. Liu, W. Y. William, G. Zou, B. Zou,RSC Adv., 2013, 3, 8104-8130. [81] G. O. Rabell, M. R. A.Cruz, I. Juárez-Ramírez, J. Photochem. Photobiol. A, 2022, 433, 114185. [82] A. Trovarelli,Catal. Rev. Sci. Eng., 1996, 38, 439-520. [83] M. M. Khan, S. A. Ansari, D. Pradhan, D. H. Han, J. Lee, M. H,Cho. Ind. Eng. Chem. Res., 2014, 53, 9754-63. [84] M. Capdevila-Cortada, G. Vilé, D. Teschner, J. Pérez-Ramírez, N. López, Appl. Catal. B, 2016, 197, 299-312. [85] K. Jayaprakash, A. Sivasamy, Colloids Surf. A, 2023, 676, 132260. [86] B. Talluri, K. Yoo, J. Kim,Ceram. Int., 2022, 48, 18645-18650. [87] S. Hu, B. Chi, J. Pu, L. Jian, J. Mater. Chem. A, 2014, 2, 19260-19267. [88] A. Marizcal-Barba, I. Limón-Rocha, A. Barrera, J. E. Casillas, O. A.González-Vargas, J. L. Rico, C. Martinez-Gómez, A. Pérez-Larios, Inorganics, 2022, 10, 67. [89] M. M. Kaid, A. S. Khder, S. A. Ahmed, A. A. Ibrahim, H. M. Altass, R. I. Alsantali, R. S. Jassas, M. A. Khder, M. M.Al-Rooqi, Z. Moussa, A. I. Ahmed, ACS Omega, 2022, 7, 17223-17233. [90] J. D. Rodney, S. Deepapriya, M. C. Robinson, C. J. Raj, S. Perumal, B. C. Kim, S. Krishnan, S. J. Das.Int. J. Hydrogen Energy, 2021, 46, 27585-27596. [91] W. Xu, X. Li, C. Peng, G. Yang, Y. Cao, H. Wang, F. Peng, H. Yu, Appl. Catal. B, 2022, 303, 120910. [92] A. M. Mohammed, S. S. Mohtar, F. Aziz, S. A. Mhamad, M. Aziz, J. Environ. Chem.Eng., 2021, 9, 105138. [93] S. Kumar, C. M. Parlett, M. A. Isaacs, D. V. Jowett, R. E. Douthwaite, M. C. Cockett, A. F. Lee, Appl. Catal. B, 2016, 189, 226-232. [94] J. S. Anderson, N. N. Greenwood, Proc. R. Soc. A: Math. Phys. Eng. Sci., 1952, 215, 353-370. [95] Y. Zhang, Z. Yan, M. Zhang, Y. Tan, S. Jia, A. Liu,Appl. Surf. Sci., 2021, 548, 149218. [96] M. Sun, Q. Zhao, C. Du, Z. Liu, RSC Adv., 2015, 5, 29, 22740-22752. [97] S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C, 2009, 113, 17893-17898. [98] H. Dong, S. Pang, Y. Xu, Z. Li, Z. Zhang, W. Zhu, D. Chen, H. Xi, Z. Lin, J. Zhang, Y. Hao, ACS Appl. Mater. Interfaces, 2020, 12, 54703-54710. [99] S. M. Gupta, M. Tripathi,High Energy Chem., 2012, 46, 1-9. [100] V. Dutta, S. Sharma, P. Raizada, V. K. Thakur, A. A. Khan, V. Saini, A. M. Asiri, P. Singh, J. Environ. Chem.Eng., 2021, 9, 105018. [101] A. V. Avani, E. I. Anila, Int. J. Hydrogen Energy, 2022, 47, 20475-20493. [102] C. J. Wort, R. S. Balmer, Mater. Today, 2008, 11, 22-28. [103] K. G. Crawford, I. Maini, D. A. Macdonald, D. A. Moran,Prog. Surf. Sci., 2021, 96, 100613. [104] X. Dong, R. Qiao, T. Wang, Y. An, Y. Wang, Carbon, 2022, 191, 106-111. [105] H. Yang, Y. Ma, Y. Dai,Funct. Diam., 2021, 1, 150-159. [106] K. Wu, M. Liao, L. Sang, J. Liu, M. Imura, H. Ye, Y. Koide, J. Appl. Phys., 2018, 123, 161599. [107] G. Lu, K. Yu, Z. Wen, J. Chen, Nanoscale, 2013, 5, 1353-1368. [108] J. Zhao, P. Ji, Y. Li, R. Li, K. Zhang, H. Tian, K. Yu, B. Bian, L. Hao, X. Xiao, W. Griffin, Nature, 2024, 625, 60-65. [109] H. Chang, J. Cheng, X. Liu, J. Gao, M. Li, J. Li, X. Tao, F. Ding, Z. Zheng,Chem. Eur. J., 2011, 17, 8896-8903. [110] J. Son, S. Lee, S. J. Kim, B. C. Park, H. K. Lee, S. Kim, J. H. Kim, B. H. Hong, J. Hong,Nat. Commun., 2016, 7, 13261. [111] J. Mohammed-Ibrahim, X. Sun, J. Energy Chem., 2019, 34, 111-160. [112] Z. Tang, S. Chen, D. Li, X. Wang, A. Pan, J. Materiomics., 2023, 9, 551-567. [113] S. A. Kukushkin, A. V. Osipov, J. Phy. D.Appl. Phy., 2014, 47, 313001. [114] C. He, X. Wu, J. Shen, P. K. Chu,Nano Lett., 2012, 12, 1545-1548. [115] J. Jian, J. Sun, Solar RRL, 2020, 7, 2000111. [116] A. VahidMohammadi, J. Rosen, Y. Gogotsi, Science, 2021, 372, eabf1581. [117] D. Ontiveros, F. Viñes, C. Sousa, J. Mater. Chem. A, 2023, 11, 25, 13754-64. [118] C. Prasad, X. Yang, Q. Liu, H. Tang, A. Rammohan, S. Zulfiqar, G. V. Zyryanov, S. Shah, J. Ind. Eng.Chem., 2020, 85, 1-33. [119] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, ACS Nano, 2012, 6, 1322-31. [120] M. Ghidiu, M. R. Lukatskaya, M. Q. Zhao, Y. Gogotsi, M. W. Barsoum, Nature, 2014, 516, 78-81. [121] J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A.Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, M. W. Barsoum, Chem. Mater., 2014, 26, 2374-81. [122] H. Kim, H. N. Alshareef,ACS Mater. Lett., 2019, 2, 55-70. [123] C. G.Van de Walle, J. Neugebauer, Nature, 2003, 423, 626-628. [124] D. Han, N. Gao, Y. Chu, Z. Shi, Y. Wang, J. Ge, M. Xiao, C. Liu, W. Xing,Nano Res., 2024, 4, 2538-2545. [125] X. Li, Z. Wang, Y. Tian, X. Li, Q. Cai, J. Zhao,Chin. Chem. Lett., 2023, 34, 107812. [126] A. B. Laursen, A. S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O. L. Trinhammer, J. Rossmeisl, S. Dahl S, J. Chem. Educ., 2012, 89, 1595-1599. [127] A. J. Medford, A. Vojvodic, J. S. Hummelshøj, J. Voss, F. Abild-Pedersen, J. Catal., 2015, 328, 36-42 [128] J. Zhang, Q. Wang, L. Wang, L. Xing, W. Huang, Nanoscale, 2015, 7, 1904-1911. [129] A. Rai, H. C. Movva, A. Roy, D. Taneja, S. Chowdhury, S. K. Banerjee, Crystals, 2018, 8, 8, 316. [130] J. Lu, X. Zhang, D. Liu, N. Yang, H. Huang, S. Jin, J. Wang, P. K. Chu, X. F. Yu, ACS Appl. Mater. Interfaces, 2019, 11, 37787-37795. [131] H. Li, M. Chen, K. W. Luo, X. Huang, S. Tang, L. L. Wang, L. Xu,Surf. Sci., 2023, 734, 122316. [132] Z. Mousavi, M. Salavati-Niasari, F. Soofivand, M. Esmaeili-Zare, M. Hamadanian, J. Electron. Mater., 2016, 45, 5739-45. [133] S. Majidi, S. Pakdel, J. Azamat, H. Erfan-Niya, Two-Dimensional (2D) Nanomaterials in Separation Science, Ist ed., Springer Cham, Switzerland, 2021, 163-191. [134] J. Ren, P. Innocenzi,Small Struct., 2021, 11, 2100068. [135] J. Raymakers, K. Haenen, W. Maes, J. Mater. Chem. C, 2019, 7, 10134-10165. [136] T. Van Nguyen, M. Tekalgne, T. P. Nguyen, Q. Van Le, S. H. Ahn, S. Y. Kim, Battery Energy, 2023, 2, 20220057. [137] N. Ullah, R. Ullah, S. Khan, Y. Xu. Front.Mater. Sci., 2021, 15, 543-552. [138] S. Selvaraj, K. Natesan, P. B. Bhargav, A. Nafis, J. Water Process Eng., 2023, 54, 104033. [139] K. Peng, J. Zhou, H. Gao, J. Wang, H. Wang, L. Su, P. Wan, ACS Appl. Mater. Interfaces, 2020, 12, 19519-19529. [140] S. Vadivel, P. Sujita, B. Paul, B. Vidhya, A. Sebastian, R. Selvarajan,Catal. Commun., 2024, 187, 106882. [141] M. Rafiq, X. Hu, Z. Ye, A. Qayum, H. Xia, L. Hu, F. Lu, P. K. Chu, Nano Energy, 2022, 91, 106661. [142] K. Arifin, R. M. Yunus, L. J. Minggu, M. B. Kassim, Int. J. Hydrogen Energy, 2021, 46, 4998-5024. [143] M. M. Rehman, G. U. Siddiqui, H. B. Kim, Y. H. Doh, K. H. Choi,Mater. Res. Bull., 2018, 105, 28-35. [144] X. Zhou, X. Zhang, Y. Wang, Z. Wu,Front. Eng. Res., 2021, 8, 612512. [145] K. Zhang, B. Jariwala, J. Li, N. C. Briggs, B. Wang, D. Ruzmetov, R. A. Burke, J. O. Lerach, T. G. Ivanov, M. Haque, R. M.FeenstraJ. A. Robinson, Nanoscale, 2018, 10, 336-341. [146] J. Albero, D. Mateo, H. García, Molecules, 2019, 24, 906. [147] O. S. Chaudhary, M. Denaï, S. S. Refaat, G. Pissanidis, Energies, 2023, 16, 6689. [148] P. H. Andrade, C. Volkringer, T. Loiseau, A. Tejeda, M. Hureau, A. Moissette, Appl. Mater. Today, 2024, 37, 102094. [149] J. B. Coulter, D. P. Birnie, Phys. Status Solidi B-Basic Solid State Phys., 2018, 255, 1700393. [150] S. Landi, I. R. Segundo, E. Freitas, M. Vasilevskiy, J. Carneiro, C. J. Tavares,Solid State Commun., 2022, 341, 114573. [151] J. J. H.Rosas, R. E. R. Gutiérrez, A. Escobedo-Morales, E. C. Anota, J. Mol. Modeling, 2011, 17, 1133-1139. [152] L. C. Wang, B. H. Liu, C. Y. Su, W. S. Liu, C. C. Kei, K. W. Wang, T. P. Perng,ACS Appl. Nano Mater., 2018, 1, 3673-3681. [153] S. Mylsamy, S. Karazhanov, B. Subramanian, Chemosphere, 2024, 346, 140577. [154] B. Mallesham, S. Roy, S. Bose, A. N. Nair, S. Sreenivasan, V. Shutthanandan, C. V. Ramana, ACS Omega, 2019, 5, 104-112. [155] E. Hasegawa, N. Yoshioka, T. Tanaka, T. Nakaminato, K. Oomori, T. Ikoma, H. Iwamoto, K. Wakamatsu, ACS Omega, 2020, 5, 7651-7665. [156] M. R. Gao, S. H. Yu, J. Yuan, W. Zhang, M. Antonietti,Angew. Chem. Int. Ed., 2016, 55, 12812-12816. [157] Y. Zhou, Z. Zhou, L. Hu, R. Tian, Y. Wang, H. Arandiyan, F. Chen, M. Li, T. Wan, Z. Han, Z. Ma, X. Lu, C. Cazorla, T. Wu, D. Chu,Chem. Eng. J., 2022, 438, 135561. [158] M. Higashiwaki, R. Kaplar, J. Pernot, H. Zhao,Appl. Phys. Lett., 2021, 118, 200401. [159] H. Xu, M.K. Akbari, S. Zhuiykov S,Nanoscale Res. Lett., 2021, 16, 94. [160] T. T. Wang, Y. C. Lin, M. C. Lin, Y. G. Lin, Catal. Today, 2020, 358, 143-148. [161] T. T. Tran, H. H. Gandhi, D. Pastor, M. J. Aziz, J. S. Williams,Mater. Sci. Semicon. Proc., 2017, 62, 192-195. [162] V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M. S. Michale, J. N. Coleman, Science, 2013, 340, 1420. [163] X. Yang, X. Bian, W. Yu, Q. Wang, X. Huo, S. Teng, Int. J. Hydrogen Energy, 2022, 47, 34444-34454. [164] A. M. Adam, A. K. Diab, M. A.El-Hadek, J. Alloys Compd., 2022, 920, 165952. [165] Z. Xiao, W. Liu, S. Xu,Adv. Opt. Mater. 2023, 11, 2301028. [166] E. M. M.Ibrahim, G. A. Ahmed, V. Khavrus, N. M. A Hadia, S. H. Mohamed, S. Hampel, A. M. Adam, Physica E, 2021,125, 114396. [167] S. C. Chan, M. A.Barteau M. A. Langmuir, 2005, 21, 5588-5595. [168] J. Linnemann, K. Kanokkanchana, K. Tschulik,ACS Catal., 2021, 11, 5318-5346. [169] Q. Wang, D. Astruc,Chem. Rev., 2020, 120, 1438-511. [170] X. Y. Zheng, Y. H. Jiang, G. L. Zhuang, J. Am. Chem.Soc., 2018, 139, 18178-18181. [171] H. Yang, Li G, Jiang G, Zhang Z, Hao Z. Appl. Catal. B, 2023, 325, 122384. [172] Y. Hu, L. Shao, Z. Jiang, L. Shi, Q. Li, K. Shu, H. Chen, G. Li, Y. Dong, T. Wang, J. Li, L. Jiao, Y. Deng, Adv. Funct. Mater., 2024, 10.1002/adfm.202411011. [173] J. Zhan, M. Liu, Y. Xie, J. He, H. Zhou, L. Xing, W. Li, J. Energy Chem., 2024, 89, 259-265. [174] K. S. Exner,ACS Catal., 2020, 10, 12607-12617. [175] P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chenvrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science, 2016, 352, 797-800. [176] N. Gong, T. Zhang, M. Tan, L. Wang, Y. Tan,ACS Catal., 2023,13, 3563-3574. [177] S. M. Park, M. E. Barber, J. Electroanal. Chem., 1979, 99, 67-75. [178] J. Barber, S. Morin, B. E. Conway, J. Electroanal. Chem, 1998, 446, 125-138. [179] R. Kronberg, K. Laasonen,ACS Catal., 2021, 11, 8062-8078. [180] C. Sun, L. Wang, W. Zhao, L. Xie, J. Wang, J. Li, B. Li, S. Liu, Z. Zhuang, Q. Zhao. Adv.Funct. Mater., 2022, 32, 2206163. [181] J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff,Nat. Mater., 2006, 5, 909-913. [182] M. E. Björketun, V. Tripkovic, E. Skúlason, Catal. Today, 2013, 202, 168-174. [183] P. Kratzer, B. Hammer, J. K. Nørskov,Surf. Sci., 1996, 359, 45-53. [184] L. Zhang, X. Hu, Z. Wang, F. Sun, J. Deng, D. G. Dorrell,IEEE Trans. Veh. Technol., 2018, 67, 1027-1035. [185] T. Annoura, I. H. Ploemen, B. C. Schaijk, M. Sajid, Vaccine, 2012, 30, 2662-2670. [186] K. Takanabe, H. Idriss, L. Cavallo,ACS Catal., 2020, 10, 12858-12866. [187] M. Kumar, S. Verma, P. Sharma, S. K. Saini, S. Husale, ACS Photonics, 2024, 11, 1031-1043. [188] S. Gonuguntla, R. Kamesh R, J. Photochem. Photobiol. C, 2023, 57, 100621. [189] M. Wang, R. Dong, X. Feng X,Chem. Soc. Rev., 2021, 50, 2764-2793. [190] D. K. Pallotti, L. Passoni, J. Phys. Chem. C, 2017, 121, 9011-9021. [191] A. Kar, D. Banerjee, J. Photochem. Photobiol. A, 2023, 437, 114500. [192] R. J. Gao, J. Huang, L. Qu, X. Chen, Y. Zhu,Nat. Commun., 2023, 14, 7252. [193] U. Krishnan, D. Mandal,Ind. Eng. Chem. Res., 2022, 61, 8166-8176. [194] F. Weigert, A. Müller, I. Häusler, D. Geißler, D. Skroblin, M. Krumrey,Sci. Rep., 2020, 10, 20712. [195] T. Zahra, K. Shahzad Ahmad, C. Zequine, R. Gupta,Mater. Sci. Semicond. Process., 2022, 150, 106867. [196] J. Pan, N. Li, K. Li, S. Ran, C. Wu,Chem. Eng. J., 2023, 461, 141814. [197] J. S. Schubert, E. Doloszeski, P. Ayala, S. N. Myakala, J. Rath, B. Fickl, A. Giesriegl, D. H. Apaydin, B. C. Bayer, S. Kashiwaya, A. Cherevan, D. Eder, Adv. Mater. Interfaces, 2024, 11, 2300695. [198] D. P. Bui, M. T. Pham, H. H. Tran, T. D. Nguyen, T. M. Cao, V. V. Pham, ACS Omega, 2021, 6, 27379-27386. [199] M. Guo, Y. Zhang, X. Zhang, M. Ma, T. Hu,Appl. Surf. Sci., 2023, 617, 156602. [200] X. Yu, K. Qiu, H. Li, X. Miao, J. Wang, Q. Li, S. Lu, J. Colloid Interface Sci., 2023, 630, 645-657. [201] Y. He, S. Liu, M. Wang, H. Ji, L. Zhang, Q. Cheng, T. Qian, C. Yan,Adv. Funct. Mater. 2022, 32, 2208474. [202] Y. Luo, T. Xiao, W. Wen, J. Bao, C. Liu, Y. Pan,ACS Catal., 2024, 14, 14078-14088. [203] M. M. Meshesha, K. Kannan, D. Chanda, J. Gautam, S. G. Jang, B. L. Yang,Mater. Today Chem., 2022, 26, 101216. [204] J. Ding, Y. Liu, Z. Tian, P. Lin, F. Yang, K. Li, G. Yang, Y. Wei,Inorg. Chem. Front., 2023, 10, 3195-3201. [205] Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, Nat. Energy, 2019, 4, 732-745. [206] M. Z. I.Yasir Zaman, A. B. S. Muhammad Shahzad, H. Z. Imran Arshad, Arab. J. Chem., 2023, 16, 105230. [207] Z. Guo, P. Diao, D. Xu, S. Huang, Y. Yang, Int. J. Hydrogen Energy, 2014, 39, 7686-7696. [208] L. Wang, G. Wang, S. Li, Int. J. Hydrogen Energy, 2024, 80, 779-787. [209] L. Hammoud, C. Marchal, V. Caps, Int. J. Hydrogen Energy, 2024, 51(A), 285-300. [210] E. Sutter, J. C. Idrobo, P. Sutter, J. Mater. Chem. C, 2020, 8, 11555. [211] J. Yang, L. Xiao, W. He, J. Fan, Z. Chen, ACS Appl. Mater. Interfaces, 2016, 8, 18867-18877. [212] X. Wu, Y. Wang, Z. S. Wu, Iscience, 2024, 27, 108906. [213] M. Deng, L. Zhang, L. Tan, G. He, M. Shao, L. Li, Z. Wei. J.Energy Chem., 2022, 74, 111-120. [214] A. Loiacono, S. Diaz-Coello, G. Garcia, G. I. Lacconi, J. Electroanal. Chem., 2024, 952, 117973. [215] D. K. Perivoliotis, J. Ekspong, X. Zhao, G. Hu, T. Waagberg, E. Gracia-Espino, Nano Today, 2023, 50, 101883. [216] A. Krishnan, D. Vidyadharan, S. Swaminathan, P. Kannan,Mater. Today Proc., 2020, 25, 122-128. [217] Z. Zhong, Y. Tu, L. Zhang, J. Ke, C. Zhong, W. Tan, L. Wang L,ACS Catal., 2024, 14, 2917-2923. [218] S. Bolar, N. C. Murmu, P. Samanta, T. Kuila, ACS Appl. Mater. Interfaces, 2021, 13, 765-780. [219] C. Feng, L. Tang, Y. Deng, G. Zeng, J. Wang, Y. Liu, Z. Chen, J. Yu, J. Wang, Appl. Catal. B, 2019, 256, 117827. [220] X. Yan, Y. Jiang, B. Yang, S. Ma, T. Yao, A. Tao, C. Chen, X. Ma, H. Ye, Carbon, 2022, 200, 483-490. [221] R. Zhang, M. Li, G. Wu, L. Li, Z. Zhang, K. Liang, W. Shen,Results Phys., 2023, 52, 106916. [222] B. Wei, J. Sun, Q. Mei, Z. An, X. Wang, H. Cao, D. Han, M. He, J. Catal., 2019, 379, 10-17. [223] A. K. Nayak, M. Verma, Y. Sohn, ACS Omega, 2017, 2, 7039-7047. [224] B. Lai, S. C. Singh, J. K. Bindra, C. S. Saraj, A. Shukla, T. P. Yadav, W. Wu, S. A.McGill, N. S. Dalal, A. Srivastava, C. Guo, Mater. Today Chem., 2019, 14, 100207. [225] A. Sharma, S. J. Lee, Y. J. Jang, J. P. Jung, J. Microelectron. Packag., 2014, 21(2), 71. [226] Y. Luo, Y, L. Tang, U. Khan, Q. Yu, H-M Cheng, X. Zou, B. Liu, Nat Commu., 2019, 10, 269. [227] W. Li, F. Wang, X. Chu, X. Liu, Y. Dang,Appl. Surf. Sci., 2021, 560, 150053. [228] L. Shan, H. Liu, G. Wang, J. Nanopart. Res., 2015, 17, 181. [229] S. Garcia-Segura, E. V. dos Santos, C.A. Martínez-Huitle, Electrochem. Commun., 2015, 59, 52-55. [230] I. K. Alsulami, S. Abdullahi, A. Alshahrie, T. M. D.Alharbi, M. Alahmadi, S. B. E. N. Aoun, N. Salah, ACS Omega, 2024, 9, 17808-17816. [231] Y. Liu, H. Yu, X. Quan, S. Chen, H. Zhao, Y. Zhang,Sci. Rep., 2014, 4, 6843. [232] K. Yang, F. Zhao, J. Li, H. Yang, Y. Wang, Y. He,Adv. Funct. Mater., 2024, DOI: 10.1002/adfm.202410236. [233] H. Gao, P. Zhang, J. Hu, J. Pan, J. Fan, G. Shao,Appl. Surf. Sci., 2010, 391, 211-217. [234] H. Huang, M. Yan, C. Yang, H. He, Q. Jiang, L. Yang, Z. Lu, Z. Sun, X. Xu, Y. Bando, Y. Yamauchi,Adv. Mater., 2019, 31, 1903415. [235] J. Duan, S. Chen, M. Jaroniec, S. Z. Qiao,ACS Catal., 2015, 5, 5207-5234. [236] Y. Li, C. Ai, S. Deng, Y. Wang, X. Tong, X. Wang, X. Xia, J. Tu,Mater. Res. Bull., 2021, 134, 111094. [237] J. Li, Z. Zhao, Y. Ma, Y. Qu, ChemCatChem, 2017, 9, 1554-1568 [238] X. Ji, Y. Lin, J. Zeng, Z. Ren, Z. Lin, Y. Mu, Y. Qiu,Nat. Commun., 2021, 12, 1380. [239] M. A. Sha, L. Elias, A. H. Riyas, T. C. Bhagya, M. S. Meera, S. M. A.Shibli, Int. J. Hydrogen Energy, 2020, 45, 13789-13804. [240] M. Fazil, S. M. Alshehri, Y. Mao, T. Ahmad, Langmuir, 2024, 40, 8, 4063-4076. [241] M. Z. Salmasi, A. Omidkar, H. M. Nguyen, H. Song,Energy Rev., 2024, 3, 100070. [242] J. Jiang, F. Li, S. Bai, Y. Wang, K. Xiang, H. Wang, J. Zou, J. P. Hsu,Nano Res., 2023, 16, 4656-4663. [243] S. Wei, Y. Fu, M. Liu, H. Yue, S. Park, Y. H. Lee, H. Li, F. Yao, NPJ 2D Mater. Appl., 2022, 6, 25. [244] M. A. Tekalgne, H. H. Do, T. V. Nguyen, Q. V. Le, S. H. Hong, S. H. Ahn, S. Y. Kim, ACS Omega, 2023, 8, 41802-41808. [245] S. Bai, M. Yang, J. Jiang, X. He, J. Zou, Z. Xiong, G. Liao, S. Liu, PJ 2D Mater. Appl., 2021, 5, 78. [246] Y. Chen, B. Zhang, Y. Liu, J. Chen, H. Pan, W. Sun,Mater Today Catal., 2023, 1, 100003. [247] X. Wei, F. Mi, Y. Liu, Q. Wang, Ionics, 2023, 29, 1523-1530. [248] S. Pathan, M. Ankitha, A. A. Mohan, N. Shabana, Y. Tong, P. A. Rasheed,Mater. Adv., 2024, 5, 274-281. [249] M. Zulqarnain, A. Shah, M. A. Khan, F. Jan Iftikhar, J. Nisar,Sci. Rep., 2020, 10, 6328. [250] S. D. Alahmari, S. Aman, S. Gouadria, S. A Khan, A. G.Al-Sehemi, A. M. A. Henaish, N. Ahmad, Fuel, 2024, 358, 130275. [251] Z. Zhang, K. Chen, Q. Zhao, M. Huang, X. Ouyang,Nano Mater Sci., 2021, 3, 89-94. [252] M. Singh, M. Goyal, K. Devlal, J. Taibah Univ.Sci., 2018, 12, 470-475. [253] M. A.Ramirez-Ubillus, A. Wang, S. Zou, K. Y. Chumbimuni-Torres, L. Zhai, J. Compos. Sci., 2023, 7, 403. [254] P. Aggarwal, D. Sarkar, P. K. Dwivedi, P. W. Menezes, K. Awasthi,ACS Appl. Energy Mater., 2024, 7, 1550-1560. [255] G. Srividhya, C. Viswanathan, N. Ponpandian,Energy Adv., 2023, 2, 1464-1475. [256] Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu,Sci. Rep., 2014, 4, 6968. [257] S. Shoran, A. Sharma, S. Chaudhary,Environ. Sci. Pollut. Res., 2023, 30, 98732-98746. [258] B. Balan, M. M. Xavier, S. Mathew, ACS Omega, 2023, 8, 25649-25673. [259] J. H. Kim, J. S. Lee,Adv. Mater., 2019, 31, 1806938. [260] V. A. Jhalani, J. Zhou, M. Bernardi,Nano Lett., 2017, 17, 5012-5019. [261] S. Banerjee, D. D. Dionysiou, S. C. Pillai, Appl. Catal. B, 2015, 176-177, 396-428. [262] M. Laurenti, S. Stassi, G. Canavese, V. Cauda, Adv. Mater. Interfaces, 2017, 4, 1600758. [263] N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. G. Xing, D. Jena,Appl. Phys Lett., 2016, 109, 212101. [264] X. Han, S. Heuser, N. Y. Tong, N. Yang, X. Y. Guo, X. Jiang,Chem. Eur. J., 2020, 26, 3586-3590. [265] Y. Chen, W. Zhong, F. Chen, P. Wang, J. Fan, H. Yu, J. Mater. Sci.Technol., 2022, 121, 19-27. [266] M. Shaban, M. Mustafa, A. M.EL Sayed, Mater. Sci. Semicond. Process., 2016, 56, 329-343. [267] He, Bin, R. Liu, J. Ren, C. Tang, Y. Zhong, Y. Hu, Langmuir, 2017, 33, 6719-6726. [268] M. Luo, Y. Liu, J. Hu, H. Liu, J. Li, ACS Appl. Mater. Interfaces, 2012, 4, 1813-1821. [269] P. J. Reed, H. Mehrabi, Z. G. Schichtl, R. H. Coridan, ACS Appl. Mater. Interfaces, 2018, 43691-43698. [270] X. Zhang, Y. Chen, S. Zhang, C. Qiu,Sep. Purif. Technol., 2017, 172, 236-241. [271] M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura, J. Non-cryst. Solids, 1997, 218, 323-328. [272] X. Li, Z. Hu, J. Liu, D. Li, X. Zhang, J. Chen, J. Fang, Appl. Catal. B, 2016, 195, 29-38. [273] X. Feng, Y. Shi, J. Shi, L. Hao, Z. Hu, Int. J. Hydrogen Energy, 2021, 46, 5169-5180. [274] X. Tan, W. Cen, G. Qian, Q. Chen, Q. Xie,Mater. Sci. Semicond. Process., 2023, 167, 107779 [275] C. Ma, D. Shen, T. W. Ng, M. F. Lo, C. S. Lee,Adv. Mater., 2018, 30, 1800710. [276] M-J.Ran, M. Wang, Z-Y. Hu, Y-F. Huang, L-D. Wang, L. Wu, M-M. Yuan, J. Zhang, B. Li, G. Van Tendeloo, Y. Li, B-L. Su, J. Mater. Sci. Technol., 2025, 212, 182-191. [277] S. Huang, J. Zhang, H. Wu, H. Zhu, J. Alloys Compd., 2023, 968, 172051. [278] X. Yu, X. Fan, L. An, Z. Li, J. Liu, J. Phys. Chem. Solids, 2014, 119, 94-99. [279] D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J.DiSalvo, H. D. Abruna, Nat. Mater., 2012, 12, 81-87 [280] K. A. Alzahrani, A. A. Ismail, Surf. Interfaces, 2023, 39, 102935. [281] B. M. R. U. Dowla, J. Y. Cho, W. K. Jang, W. C. Oh, J Mater. Sci.: Mater. Electron., 2017, 28, 15106-15117. [282] W. Wang, C. Liu, H. Li, D. Dang, Y. Bai, Int. J. Hydrog. Energy., 2023, 48, 20, 7305-7318. [283] P. Dumrongrojthanath, T. Thongtem,Superlattices Microstruct., 2013, 64, 196-203. [284] S. R. Jhang, H. Y. Lin, Y. S. Liao, J. P. Chou, J. M. Wu, Nano Energy, 2022, 102, 107619. [285] M. Shoaib, M. Y. Naz, S. Shukrullah, M. A. Munir, M. Irfan, S. Rahman, A. A. Ghanim, ACS omega., 2023, 2023, 8, 43139-43150. [286] M. A. Santanna, W. T. Menezes, Y. V. B.Santana, M. M. Ferrer, A. F. Gouveia, A. D. Faceto, A. J. Terezo, A. J. A. Oliveira, E. Longo, R. G. Freitas, E. C. Pereira, Int. J. Hydrogen Energy, 2018, 43, 6838-6850. [287] F. P. Ramanery, A. A. Mansur, H. S. Mansur,Nanoscale Res. Lett., 2013, 8, 512. [288] Y. Higashida, S. Y. Takizawa, M. Yoshida, M. Kato, A. Kobayashi, ACS Appl. Mater. Interfaces, 2023, 13, 27277-27284. [289] D. V. Pandi, V. Saraswathi, M. R. Venkatraman, N. Muthukumarasamy, S. Agilan, D. Velauthapillai, K. Brindhadevi, A. Pugazhendhi,Mater. Today Chem., 2023, 29, 101444. [290] H. Xie, Y. Li, S. Jin, J. Han, X. Zhao, J. Phys. Chem. C, 2010, 114, 9706-9712. [291] S.-R. Jhang, H.-Y. Lin, Y.-S. Liao, J.-P. Chou, J. M. Wu, Nano Energy, 2022, 102, 107619. [292] J. Liu, Z. Wei, W. Shangguan, ChemCatChem, 2019, 11, 6177-6189. [293] A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys., 2003, 94, 2779-2808. [294] P. Chowdhury, H. Gomaa, A. K. Ray, Chemosphere, 2015, 121, 54-61. [295] H. Song, Y. Li, Z. Lou, M. Xiao, L. Hu, Z. Ye, L. P. Zhu, Appl. Catal. B, 2015, 116-117, 112-120. [296] S. G. Kumar, K. S. R. K. Rao,Appl. Surf. Sci., 2013, 391, 124-148. [297] J. M. Empey, C. Grieco, N. W. Pettinger, B. Kohler, J. Phys. Chem. C, 2021, 125, 14827-14835. [298] K. Sathiyan, R. Bar-Ziv, V. Marks, D. Meyerstein, T. Zidki,Chem. Eur. J., 2021, 27, 15936-15943. [299] S. Yang, H. Yang, J. Zhang, J. Lin, C. Chen, X. Xiong, J. Xi, Z. Kong, L. Song, J. Zeng, Int. J. Hydrog. Energy, 2023, 48, 20324-20337. [300] T. C. Bhagya, A. Krishnan, S. A. Rajan, M. A. Sha, B. R. Sreelekshmy, P. Jineesh, S. M. Shibli,Photochem. Photobiol. Sci., 2019, 1716-1726. [301] S. Huang, R. Bao, J. Wang, J. Yi, Z. Zhang, L. Liu, Y. Han, Z. Li, D. Min, W. Zhang, Z. Ge, J. Alloys Compd., 2023, 961, 170945. [302] Y. Liu, L. Fang, H. Lu, L. Liu, H. Wang, C. Hu,Catal. Commun., 2012, 17, 200-204. [303] T. R.Harris-Lee, F. Marken, C. L. Bentley, J. Zhang, A. L. Johnson, EES Catal., 2023, 1, 832-873. [304] P. Varma, L. A. Rodrigues, Y. Lianqing, D. A. Reddy,Appl. Surf. Sci., 2023, 624, 157143. [305] J. Wang, R. Pan, Q. Hao, Y. Gao, J. Ye, Y. Wu, T. van Ree, Appl. Surf. Sci., 2022, 599, 153875. [306] S. Bawari, S. Pal, S. Pal, J. Mondal, T. N. Narayanan, J. Phys. Chem. C, 2019, 123, 17249-17254 [307] M. M. Abodouh, G. E. Khedr, N. K. Allam, Int. J. Hydrogen Energy, 2024, 61, 922-933. [308] C. He, X. Wu, J. Shen, P. K. Chu,Nano Lett., 2012, 12, 1545-1548. [309] G. G. Bessegato, T. T. Guaraldo, J. F. de Brito, M. F. Brugnera, Electrocatalysis, 2015, 6, 415-441. [310] W. Fu, Y. Zhang, X. Zhang, H. Yang, R. Xie, S. Zhang, Y. Lv, L. Xiong, Molecules, 2024, 29, 289. [311] J. Li, C. Chen, L. Xu, Y. Zhang, W. Wei, E. Zhao, Y. Wu, C. Chen. JACS Au, 2023, 3, 736-755. [312] N. Orangi, H. Farrokhpour, H. Jouypazadeh, F. Eshaghzadeh, Iran. J. Sci., 2024, 48, 1351-1364. [313] C. Liu, Y. Yang, W. Li, J. Li, Y. Li, Q. Shi, Q. Chen, ACS Appl. Mater. Interfaces, 2015, 7, 10763-10770. [314] R. Cao, H. Yang, S. Zhang, X. Xu, Appl. Catal. B, 2019, 258, 117997. [315] G. O. Rabell, M. A. Cruz, I. Juárez-Ramírez, Mater. Sci. Semicond. Process., 2021, 134, 105985. [316] Y. Tan, S. Zhang, R. Shi, W. Wang, K. Liang, Int. J. Hydrogen Energy, 2016, 41, 5437-5444. [317] K. Aleksić, I. Stojković Simatović, A. Stanković, L. Veselinović, S. Stojadinović, V. Rac, N. Radmi-lović, V. Rajić, S.D. Škapin, L. Mančić, S. Marković, Front. Chem., 2023, 11, 1173910. [318] Y. Wang, D. Wang, Y. Li, Adv. Mater., 2021, 33, 2008151. [319] C. Liu, Y. Cui, Y. Zhou, Energy Mater., 2025, 5, 500001. [320] B. Sun, M. Xu, X. Li, B. Zhang, R. Hao, X. Fan, B. Jia, D. She, Nano Res., 2024, 17, 3533-3546. [321] Y. Song, Y. Cui, L. Geng, B. Li, L. Ge, L. Zhou, Z. Qiu, J. Nan, W. Wu, H. Xu, X. Li, Z. Yan, Q. Xue, Y. Tang, W. Xing, Adv. Energy Mater., 2024, 14, 2303207. [322] M. Humayun, M. Israr, A. Khan, M. Bououdina, Nano Energy, 2023, 113, 108570. [323] S. Hejazi, M. S. Killian, A. Mazare, S. Mohajernia, Catalysts, 2022, 12, 905. [324] Z. Xu, Y. Zhang, Z. Wang, D. Chen, P. You, S. Li, H. Guo, S. Meng, Nano Lett., 2023, 23, 4023-4031. [325] T. Tang, Z. Wang, J. Guan, Coord. Chem. Rev., 2023, 492, 215288. [326] Z. Xue, W. Yu, T. Zhang, S. He, W. Zhao, B. Wang, Y. Liu, B Zou, R Zhang, Z Zhao, Chem. Eng. J., 2023, 463, 142470. [327] C. Liu, F. Liu, H. Li, J. Chen, J. Fei, Z. Yu, Z. Yuan, C. Wang, H. Zheng, Z. Liu, M. Xu, G. Henkelman, L. Wei, Y. Chen, ACS Nano, 2021, 15, 3309-3319. [328] A. Castellanos-Gomez, X. Duan, Z. Fei, H. R. Gutierrez, Y. Huang, X. Huang, J. Quereda, Q. Qian, E. Sutter, P. Sutter, Nat. Rev. Methods Primers, 2020, 2, 58. [329] Y. Yan, Z. Zeng, M. Huang, P. Chen, Mater. Today Adv., 2020, 6, 100059. [330] A. R. Puente Santiago, T. He, O. Eraso, A. M. Ahsan, A. N. Nair, V. S. N. Chava, T. Zheng, S. Pilla, O. Fernandez-Delgado, A. Du, S. T. Sreenikvasan, J. Am. Chem. Soc., 2020, 142, 17923-17927. [331] G. Yan, X. Sun, Y. Zhang, H. Li, H. Huang, B. Jia, D. Su, Nano-Micro Lett., 2023, 15, 132. [332] F. Guzman, S. S. Chuang, C. Yang, Ind. Eng. Chem. Res., 2013, 52, 61-65. [333] L. Jiao, J. Wang, H. L. Jiang, Acc. Mater. Res., 2021, 2, 327-339. [334] M. Capdevila-Cortada, Nat. Catal., 2023, 6, 217. [335] Q. Fu, X. Bao, Nat. Catal., 2019, 2, 834-836. [336] H. Wu, A. Singh-Morgan, K. Qi, Z. Zeng, V. Mougel, D. Voiry, ACS Catal., 2023, 13, 8, 5375-5396. [337] H. Zhao, J. T. Ren, Z. Y. Yuan, Coord. Chem. Rev., 2024, 514, 215901. [338] Y. Gao, B. Liu, D. Wang, Adv. Mater., 2023, 35, 2209654. [339] Y. Ju, Z. Wang, H. Lin, R. Hou, H. Li, Z. Wang, R. Zhi, Chem. Eng. J., 2024, 479, 147800. [340] D. Zhao, Y. Yang, V. Binas, S. Shen, Sci. China Mater., 2024, 67, 1765-1779. [341] M. Ai, L. Pan, C. Shi, Z. Huang, X. Zhang, W. Mi, J. Zou, Nat. Commun., 2023, 14, 4562. [342] Z. He, K. Lin, N. H. Wong, J. Sunarso, Y. Xia, X. Fu, B. Tang, Z. Huang, Y. Wang, H. Yang, Nano Energy, 2024, 124, 109483. [343] Z. Zhang, P. Ma, L. Luo, X. Ding, S. Zhou, J. Zeng, Angew. Chem. Int. Ed., 2023, 62, e202216837. [344] H. Bai, J. Feng, D. Liu, P. Zhou, R. Wu, C. T. Kwok, W. F. Ip, W. Feng, X. Sui, H. Liu, H. Pan, Small, 2023, 19, 2205638. [345] W. Gao, Y. Zou, Y. Zang, X. Zhao, W. Zhou, Y. Dai, H. Liu, J.-J. Wang, Y. Ma, Y. Sang, Chem. Eng. J., 2023, 455, 140821. [346] L. Lin, P. Su, Y. Han, Y. Xu, Q. Ni, X. Zhang, P. Xiong, Z. Sun, eScience., 2024, 10.1016/j.esci.2024.100264. [347] H. Song, S. Luo, H. Huang, B. Deng, J. Ye, ACS Energy Lett., 2022, 7, 1043-1065. [348] X. Xu, J. Guan, Chem. Sci., 2024, 15, 14585-14607. [349] B. C. Xu, Y. P. Miao, M. Q. Mao, D. L. Li, S. Xie, W. H. Jin, S. Xiao, J. Wen, Z. Abd-Allah, Z. T. Liu, X. Peng, P. K. Chu, Rare Metals, 2024, 43, 2660-2670. [350] C. Peng, W. Fan, Q. Li, W. Han, X. Chen, G. Zhang, Y. Yan, Q. Gu, C. Wang, H. Zhang, P. Zhang, J. Mater. Sci. Technol., 2022, 115, 208-220. [351] H. Kumari, Sonia, Suman, R. Ranga, S. Chahal, S. Devi, S. Sharma, S. Kumar, P. Kumar, A. Kumar, R. Parmar, Water Air Soil Poll., 2023, 243, 349. [352] T. Wang, J. Cao, J. Li, J. Li, D. Li, S. Wang, Z. Ao, Environ. Sci. Nano, 2024, 6, 3712-3722. [353] K. Fang, L. Xu, M. Yang, Q. Chen, Sep. Purif. Technol. 2023, 309, 123048. [354] A. Bhuin, S. Udayakumar, J. Gopalarethinam, Sci. Rep., 2024, 14, 10406. [355] S. Li, S. Shan, S. Chen, H. Li, Z. Li, Y. Liang, J. Fei, J. Environ. Chem. Eng., 2021, 9, 105967. [356] G. Suresh, M. S. Meera, A. Anil, S. George, S. M. A. Shibli, ACS Appl. Nano Mater., 2024, 7, 16806-16822. [357] A. Saravanan, P. S. Kumar, S. Jeevanantham, S. Karishma, S. Jeevanantham, B. Gayathri, V. D. Bharathi, Environ. Chem. Lett., 2021, 19, 441-463. [358] X. Dai, Y. Yu, T. Ye, J. Deng, Y. Bu, M. Shi, R. Wang, J. Zhou, L. Sun, X. Chen, X. Shen, Nano Lett., 2024, 24, 983-992. [359] S. P. Bremner, C. Yi, I. Almansouri, A. Ho-Baillie, M. A. Green, Sol. Energy, 2016, 135, 750-757. [360] M. Gamel, G. Lopez, A. M. Medrano, A. Jimenez, A. Datas, M. Garin, I. Martin, Sol. Energy Mater. Sol. Cells, 2024, 265, 112662. [361] B. R. Sutherland, Joule, 2020, 4, 984-985. [362] M. H. Miah, M. U. Khandaker, M. A. Islam, M. Nur-E-Alam, H. Osman, H. M. Uiiah, RSC Adv., 2024, 14, 6656-6698 [363] R. Cariou, J. Benick, F. Feldmann, O. Höhn, H. Hauser, P. Beutel, N. Razek, M. Wimplinger, B. Blaesi, D. Lackner, M. Hermle, G. Siefer, S. W. Glunz, A. W. Bett, F. Dimroth, Nat. Energy, 2018, 3, 326-333. [364] Y. Zhang, P. Xu, J. Zhu, S. Yan, J. Zhang, L. Li, Mater. Today Phys., 2023, 32, 101031. [365] D. Mateo, J. L. Cerrillo, S. Durini, J. Gascon, Chem. Soc. Rev., 2021, 50, 2173-2210. [366] H. Li, H. Ji, J. Liu, W. Liu, F. Li, Z. Shen, Appl. Catal. B, 2023, 328, 122481. [367] C. H Yun, J. Kim, F. Hollmann, C. B. Park, Chem. Sci., 2022, 13, 12260-12279. [368] V. Alphand, W. J. H. van Berkel, V. Jurkas, S. Kara, R. Kourist, W. Kroutil, F. Mascia, M. M. Nowaczyk, C. E. Paul, S. Schmidt, J. Spasic, P. Tamagnini, C. K. Winkler, ChemPhotoChem, 2023, 7, e202200325. [369] J. Yang, C. K. Sou, Y. Lu, Green Energy Environ., 2023, 9, 1366-1383. [370] P. Banoth, A. Sohan, C. Kandula, R. K. Kanaka, P. Kollu, ACS Omega, 2022, 7, 12910-12921. [371] M. A. Riaz, Y. Chen, Nanoscale Horiz., 2022, 7, 463-479. [372] M. Jagannathan, S. Cho, Nano Mater. Sci. 2024, 10.1016/j.nanoms.2024.06.007. [373] I. Jang, J. S. A. Carneiro, J. O. Crawford, Y. J. Cho, S. Parvin, D. A. Gonzalez-Casamachin, J. Baltrusaitis, R. P. Lively, E. Nikolla, Chem. Rev., 2024, 124, 8233-8306. [374] A. S. Alabi, A. P. I. Popoola, O. M. Popoola, Front. Energy Res., 2023, 11, 1091105. [375] A. Arifutzzaman, M. K. Aroua, M. Khalil, J CO2 Util., 2024, 83, 102797. |
[1] | Kaining Li, Yasutaka Kuwahara, Hiromi Yamashita. Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO2 electroreduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 66-76. |
[2] | Hui Fu, Jin Tian, Qianqian Zhang, Zhaoke Zheng, Hefeng Cheng, Yuanyuan Liu, Baibiao Huang, Peng Wang. Single-atom modified graphene cocatalyst for enhanced photocatalytic CO2 reduction on halide perovskite [J]. Chinese Journal of Catalysis, 2024, 64(9): 143-151. |
[3] | Hao Dai, Tao Song, Xian Yue, Shuting Wei, Fuzhi Li, Yanchao Xu, Siyan Shu, Ziang Cui, Cheng Wang, Jun Gu, Lele Duan. Cu single-atom electrocatalyst on nitrogen-containing graphdiyne for CO2 electroreduction to CH4 [J]. Chinese Journal of Catalysis, 2024, 64(9): 123-132. |
[4] | Zhiyuan Liu, Changan Wang, Ping Yang, Wei Wang, Hongyi Gao, Guoqing An, Siqi Liu, Juan Chen, Tingting Guo, Xinmeng Xu, Ge Wang. Microenvironment and electronic state modulation of Pd nanoparticles within MOFs for enhancing low-temperature activity towards DCPD hydrogenation [J]. Chinese Journal of Catalysis, 2024, 64(9): 112-122. |
[5] | Zheng Lin, Wanting Xie, Mengjing Zhu, Changchun Wang, Jia Guo. Boosting photocatalytic hydrogen evolution enabled by SiO2-supporting chiral covalent organic frameworks with parallel stacking sequence [J]. Chinese Journal of Catalysis, 2024, 64(9): 87-97. |
[6] | Chengguang Lang, Yantong Xu, Xiangdong Yao. Perfecting HER catalysts via defects: Recent advances and perspectives [J]. Chinese Journal of Catalysis, 2024, 64(9): 4-31. |
[7] | Zhaoqi Zhao, Yunzhu Zhong, Xiaoxia Chang, Bingjun Xu. C-H bond activation of propane on Ga2O22+ in Ga/H-ZSM-5 and its mechanistic implications [J]. Chinese Journal of Catalysis, 2024, 64(9): 32-43. |
[8] | Chunguang Chen, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Graham Dawson, Kai Dai. Chalcogenide-based S-scheme heterojunction photocatalysts [J]. Chinese Journal of Catalysis, 2024, 63(8): 81-108. |
[9] | Yunying Huo, Cong Guo, Yongle Zhang, Jingyi Liu, Qiao Zhang, Zhiting Liu, Guangxing Yang, Rengui Li, Feng Peng. Realizing efficient electrochemical oxidation of 5-hydroxymethylfurfural on a freestanding Ni(OH)2/nickel foam catalyst [J]. Chinese Journal of Catalysis, 2024, 63(8): 282-291. |
[10] | Jiayong Xiao, Chao Jiang, Hui Zhang, Zhuo Xing, Ming Qiu, Ying Yu. Amorphous core-shell NiMoP@CuNWs rod-like structure with hydrophilicity feature for efficient hydrogen production in neutral media [J]. Chinese Journal of Catalysis, 2024, 63(8): 154-163. |
[11] | Qiqi Zhang, Hui Miao, Jun Wang, Tao Sun, Enzhou Liu. Self-assembled S-scheme In2.77S4/K+-doped g-C3N4 photocatalyst with selective O2 reduction pathway for efficient H2O2 production using water and air [J]. Chinese Journal of Catalysis, 2024, 63(8): 176-189. |
[12] | Qinghui Ren, Liang Xu, Mengyu Lv, Zhiyuan Zhang, Zhenhua Li, Mingfei Shao, Xue Duan. Cation effects in electrocatalytic reduction reactions: Recent advances [J]. Chinese Journal of Catalysis, 2024, 63(8): 16-32. |
[13] | Zhipeng Li, Xiaobin Liu, Qingping Yu, Xinyue Qu, Jun Wan, Zhenyu Xiao, Jingqi Chi, Lei Wang. Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review [J]. Chinese Journal of Catalysis, 2024, 63(8): 33-60. |
[14] | Chenyang Shen, Menghui Liu, Song He, Haibo Zhao, Chang-jun Liu. Advances in the studies of the supported ruthenium catalysts for CO2 methanation [J]. Chinese Journal of Catalysis, 2024, 63(8): 1-15. |
[15] | Chao Li, Shuo Wang, Yuan Liu, Xihe Huang, Yan Zhuang, Shuhong Wu, Ying Wang, Na Wen, Kaifeng Wu, Zhengxin Ding, Jinlin Long. Superposition of dual electric fields in covalent organic frameworks for efficient photocatalytic hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 63(8): 164-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||