Chinese Journal of Catalysis ›› 2024, Vol. 67: 71-81.DOI: 10.1016/S1872-2067(24)60159-2
• Article • Previous Articles Next Articles
Zhihan Yua, Dainan Zhanga(), Chenbing Aib, Jianjun Zhangb(
), Quanjun Xianga(
)
Received:
2024-08-24
Accepted:
2024-09-24
Online:
2024-11-30
Published:
2024-11-30
Contact:
Dainan Zhang, Jianjun Zhang, Quanjun Xiang
Supported by:
Zhihan Yu, Dainan Zhang, Chenbing Ai, Jianjun Zhang, Quanjun Xiang. Dynamic proton migration in dual linkage-engineered D-π-A system for photosynthesis H2O2 generation[J]. Chinese Journal of Catalysis, 2024, 67: 71-81.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60159-2
Fig. 1. Structural characterizations. (a) The synthesis process of ABE/IL-CN. The imine bond is formed between carbon nitride (CN) and 4-acetylene benzaldehyde (ABE) by coupling an amino group with an aldehyde group. Imidazole cations are present in 1,3-dimethylimidazole tetrafluoroborate (IL), and the hydrogen atoms bonded by carbon atoms act as hydrogen donors to form hydrogen bonds with the more electronegative sp2 N atoms. FTIR spectra (b), high-resolution C 1s XPS (c), and Raman shift (d) of ABE/IL-CN, ABE-CN, IL-CN, and CN. (e) Solid-state 13C NMR spectra of ABE/IL-CN.
Fig. 2. Photocatalytic performance of H2O2 generation. (a) Comparison of photocatalytic H2O2 production rates of ABE/IL-CN, ABE-CN, IL-CN, and CN in water under O2 bubbling. (b) Photocatalytic H2O2 evolution rate of nABE/IL-CN under 1 h visible light irradiation, n indicates the ABE concentration (0.5, 1.0, 2.0, and 4.0 mmol L−1) of ethyl acetate solution used for the synthesis of ABE graft samples, the molar ratio of ABE to IL is constant 2:1. (c) Visible light-driven photocatalytic H2O2 production by ABE/IL-CN under different conditions of air + MeOH, air, N2 + NaIO3, and N2. (d) Cycling time course of ABE/IL-CN under visible-light irradiation in O2-saturated pure water generated H2O2. (e) H2O2 decomposition curves of ABE/IL-CN, ABE-CN, IL-CN, and CN under light irradiation (C0 = 1 mmol L−1 H2O2, N2 bubbling). (f) The wavelength-dependent apparent quantum yield of ABE/IL-CN in overall water splitting for H2O2 production.
Fig. 3. In-situ structural evolution of the photocatalysts. In-situ DRIFTS spectra of ABE/IL-CN (a), ABE-CN (b), and IL-CN (c) recorded during photocatalytic H2O2 production in O2 atmosphere. (d) The key reaction sites and intermediates of WOR and ORR are obtained by in-situ DRIFTS spectra. (e) Time-resolved transient PL decay of ABE-CN, IL-CN, and ABE/IL-CN.
Sample | τ1/ns | A1/% | τ2/ns | A2/% | τave/ns |
---|---|---|---|---|---|
ABE-CN IL-CN ABE/IL-CN | 3.14 2.58 3.10 | 100.89 92.33 102.08 | 21.13 14.79 20.31 | 66.34 9.47 6.54 | 8.71 7.10 8.19 |
Table 1 The related parameter of TRPL in ABE-CN, IL-CN, and ABE/IL-CN.
Sample | τ1/ns | A1/% | τ2/ns | A2/% | τave/ns |
---|---|---|---|---|---|
ABE-CN IL-CN ABE/IL-CN | 3.14 2.58 3.10 | 100.89 92.33 102.08 | 21.13 14.79 20.31 | 66.34 9.47 6.54 | 8.71 7.10 8.19 |
Fig. 4. Proton transfer at the reaction sites. (a) The contents of O2 and H2 gases formed by ABE-CN and IL-CN after the addition of excess electron sacrifice agent (NaIO3) and hole sacrifice agent (TEOA), respectively. (b) Visible light-driven photocatalytic H2O2 production of ABE-CN and IL-CN under different conditions. (c) H2O2 generation rate over ABE/IL-CN and protonated ABE/IL-CN (H-ABE/IL-CN-m) in the protic solvent (ethanol), aprotic solvent (acetone) and water; m indicates the IL concentration (1.0 and 1.25 mmol L-1) of methanol solution used for the synthesis of IL graft samples, the molar number of ABE was constant (2.0 mmol L-1). (d) Mechanism of ABE/IL-CN and H-ABE/IL-CN-m for photocatalytic H2O2 formation in acetone solvent. The colors of the balls correspond to different atoms, gray: carbon; blue: nitrogen; pink: boron; cyan: fluorine; red: oxygen; white and yellow: hydrogen.
Photocatalyst | Protonation | ABE:IL | Solution | H2O2 production (μmol L-1 h-1) |
---|---|---|---|---|
ABE/IL-CN H-ABE/IL-CN-1 H-ABE/IL-CN-1.25 | Aprotonation Protonation Protonation | 2:1 2:1 2:1.25 | water aprotic solvent (acetone) protic solvent (ethanol) water aprotic solvent (acetone) protic solvent (ethanol) water aprotic solvent (acetone) protic solvent (ethanol) | 219.5 0 394.2 206.9 315.4 473.0 278.5 243.1 408.3 |
Table 2 Photocatalytic H2O2 generation performance of a series of protonation/aprotonation photocatalysts as comparison in protic/aprotic solution under air atmosphere.
Photocatalyst | Protonation | ABE:IL | Solution | H2O2 production (μmol L-1 h-1) |
---|---|---|---|---|
ABE/IL-CN H-ABE/IL-CN-1 H-ABE/IL-CN-1.25 | Aprotonation Protonation Protonation | 2:1 2:1 2:1.25 | water aprotic solvent (acetone) protic solvent (ethanol) water aprotic solvent (acetone) protic solvent (ethanol) water aprotic solvent (acetone) protic solvent (ethanol) | 219.5 0 394.2 206.9 315.4 473.0 278.5 243.1 408.3 |
Fig. 5. Charge carrier dynamics analysis. Two-dimensional TA spectra images of ABE/IL-CN (a), ABE-CN (b), and IL-CN (c). Femtosecond transient absorption spectra of ABE/IL-CN (d), ABE-CN (e), and IL-CN (f). Decay dynamics traces at 405 nm for ABE/IL-CN (g), ABE-CN (h), and IL-CN (i).
Fig. 6. Illustration of the proposed photocatalytic mechanism of H2O2 photosynthesis over ABE/IL-CN under UV-vis light irradiation. The colors of the balls correspond to different atoms, gray: carbon; blue: nitrogen; pink: boron; cyan: fluorine; red: oxygen; white and yellow: hydrogen.
|
[1] | Weijie Ren, Ning Li, Qing Chang, Jie Wu, Jinlong Yang, Shengliang Hu, Zhenhui Kang. Abstracting photogenerated holes from covalent triazine frameworks through carbon dots for overall hydrogen peroxide photosynthesis [J]. Chinese Journal of Catalysis, 2024, 62(7): 178-189. |
[2] | Teng Liang, Yutong Li, Shuai Xu, Yuxin Yao, Rongping Xu, Ji Bian, Ziqing Zhang, Liqiang Jing. Synergy of charge migration direction-manipulated Z-scheme heterojunction of BiVO4 quantum dots/perylenetetracarboxylic acid and nanosized Au modification for artificial H2O2 photosynthesis [J]. Chinese Journal of Catalysis, 2024, 62(7): 277-286. |
[3] | Wenjuan Zhang, Gang Liu. Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts [J]. Chinese Journal of Catalysis, 2024, 66(11): 76-109. |
[4] | Jie He, Xuandong Wang, Shangbin Jin, Zhao-Qing Liu, Mingshan Zhu. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity [J]. Chinese Journal of Catalysis, 2022, 43(5): 1306-1315. |
[5] | Qinqin Liu, Xudong He, Jinjun Peng, Xiaohui Yu, Hua Tang, Jun Zhang. Hot-electron-assisted S-scheme heterojunction of tungsten oxide/graphitic carbon nitride for broad-spectrum photocatalytic H2 generation [J]. Chinese Journal of Catalysis, 2021, 42(9): 1478-1487. |
[6] | Jiuyuan Nie, Xiaodong Wu, Ziran Ma, Tengfei Xu, Zhichun Si, Lei Chen, Duan Weng. Tailored temperature window of MnOx-CeO2 SCR catalyst by addition of acidic metal oxides [J]. Chinese Journal of Catalysis, 2014, 35(8): 1281-1288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||