• Communication • Previous Articles Next Articles
Yi-Fan Xia, Rui-Xing Gaoa, Ping Fanga, Ya-Ping Hanb,*, Cong Maa, Tian-Sheng Meia,*
Received:
2024-09-02
Accepted:
2024-09-10
Contact:
*E-mail: mei7900@sioc.ac.cn (T.-S. Mei), 2019070@hebut.edu.cn (Y.-P. Han).
Supported by:
Yi-Fan Xi, Rui-Xing Gao, Ping Fang, Ya-Ping Han, Cong Ma, Tian-Sheng Mei. Site-selective benzylic C-H oxidation through mediated electrolysis[J]. Chinese Journal of Catalysis, DOI: 10.1016/S1872-2067(24)60139-7.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjcatal.com/EN/10.1016/S1872-2067(24)60139-7
[1] V. A. Adamian, W. H.Gong, in: Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives, S. S. Stahl, P. L. Alsters, Eds., Wiley-VCH, 2016, 41-66. [2] H. Sterckx, B. Morel, B. U. W.Maes,Angew. Chem. Int. Ed., 2019, 58, 7946-7970. [3] I. Bakanas, R. F. Lusi, S. Wiesler, J. H. Cooke, R. Sarpong,Nat. Rev. Chem., 2023, 7, 783-799. [4] A. N. Campbell, S. S. Stahl,Acc. Chem. Res., 2012, 45, 851-863. [5] E. Roduner, W. Kaim, B. Sarkar, V. B. Urlacher, J. Pleiss, R. Gläser, W.-D. Einicke, G.A. Sprenger, U. Beifuß, E. Klemm, C. Liebner, H. Hieronymus, S.-F. Hsu, B. Plietker, S. Laschat,ChemCatChem, 2013, 5, 82-112. [6] K. Chen, J. M. Richter, P. S. Baran,J. Am. Chem. Soc. 2008, 130, 7247-7249. [7] J. De Houwer, K. A. Tehrani, B. U. W.Maes,Angew. Chem. Int. Ed., 2012, 51, 2745-2748. [8] H. Sterckx, C. Sambiagio, V. M.-Navarrete, B. U. W.Maes,Adv. Synth. Catal., 2017, 359, 3226-3236. [9] H. Sterckx, J. D. Houwer, C. Mensch, I. Caretti, K. A. Tehrani, W. A. Herrebout, S. V. Doorslaer, B. U. W.Maes,Chem. Sci., 2015, 7, 346-357. [10] Y. Ishii, K. Nakayama, M. Takeno, S. Sakaguchi, T. Iwahama, Y. Nishiyama,J. Org. Chem., 1995, 60, 3934-3935. [11] Y. Ishii, S. Sakaguchi, T. Iwahama,Adv. Synth. Catal., 2001, 343, 393-427. [12] T. Iwahama, K. Syojyo, S. Sakaguchi, Y. Ishii,Org. Process Res. Dev. 1998, 2, 255-260. [13] J. Ozawa, M. Tashiro, J. Ni, K. Oisaki, M. Kanai,Chem. Sci., 2016, 7, 1904-1909. [14] J. Ni, J. Ozawa, K. Oisaki, M. Kanai,Org. Biomol. Chem., 2016, 14, 4378-4381. [15] M. S. Chen, M. C. White,Science, 2007, 318, 783-787. [16] C. Einhorn, J. Einhorn, C. Marcadal-Abbadi, J.-L. Pierre,J. Org. Chem., 1999, 64, 4542-4546. [17] M. Nechab, D. N. Kumar, C. Philouze, C. Einhorn, J. Einhorn,Angew. Chem. Int. Ed., 2007, 46, 3080-3083. [18] Y. Kawamata, M. Yan, Z. Liu, D.-H. Bao, J. Chen, J. T. Starr, P. S. Baran,J. Am. Chem. Soc., 2017, 139, 7448-7451. [19] M. Saito, Y. Kawamata, M. Meanwell, R. Navratil, D. Chiodi, E. Carlson, P. Hu, L. Chen, S. Udyavara, C. Kingston, M. Tanwar, S. Tyagi, B. P.McKillican, M. G. Gichinga, M. A. Schmidt, M. D. Eastgate, M. Lamberto, C. He, T. Tang, C. A. Malapit, M. S. Sigman, S. D.Minteer, M. Neurock, P. S. Baran,J. Am. Chem. Soc., 2021, 143, 7859-7867. [20] T. Kato, K. Maruoka,Angew. Chem. Int. Ed., 2020, 59, 14261-14264. [21] Y. Cao, C. Huang, Q. Lu,Nat. Synth., 2024, 3, 537-544. [22] L. Zou, X. Wang, S. Xiang, W. Zheng, Q. Lu,Angew. Chem. Int. Ed., 2023, 62, e202301026. [23] W. Fan, X. Zhao, Y. Deng, P. Chen, F. Wang, G. Liu,J. Am. Chem. Soc., 2022, 144, 21674-21682. [24] C.-Y. Cai, X.-L. Lai, Y. Wang, H.-H. Hu, J. Song, Y. Yang, C. Wang, H.-C. Xu,Nat. Catal., 2022, 5, 943-951. [25] Z. Wang, C. Ma, P. Fang, H. Xu, T. Mei,Acta Chim. Sin., 2022, 80, 1115-1134. [26] P. Xiong, H.-C. Xu,Acc. Chem. Res., 2019, 52, 3339-3350. [27] T. Noël, Y. Cao, G. Laudadio,Acc. Chem. Res., 2019, 52, 2858-2869. [28] Y. Wang, S. Dana, H. Long, Y. Xu, Y. Li, N. Kaplaneris, L. Ackermann,Chem. Rev., 2023, 123, 11269-11335. [29] P. S. Baran, C. Kingston, M. D. Palkowitz, Y. Takahira, J. C. Vantourout, B. K. Peters, Y. A Kawamata,Acc. Chem. Res., 2020, 53, 72-83. [30] J.-M. Savéant,Chem. Rev., 2008, 108, 2348-2378. [31] R. Francke, R. D. Little,Chem. Soc. Rev., 2014, 43, 2492-2521. [32] F. Wang, S. S. Stahl,Acc. Chem. Res., 2020, 53, 561-574. [33] Y. Yuan, A. Lei,Acc. Chem. Res., 2019, 52, 3309-3324. [34] L. Ackermann,Acc. Chem. Res., 2020, 53, 84-104. [35] M. A. Hoque, J. Twilton, J. Zhu, M. D. Graaf, K. C. Harper, E. Tuca, G. A.DiLabio, S. S. Stahl,J. Am. Chem. Soc., 2022, 144, 15295-15302. [36] M. Rafiee, F. Wang, D. P. Hruszkewycz, S. S. Stahl,J. Am. Chem. Soc., 2018, 140, 22-25. [37] J. E. Nutting, M. Rafiee, S. S. Stahl,Chem. Rev., 2018, 118, 4834-4885. [38] M. Masui, T. Ueshima, S. Ozaki,J. Chem. Soc. Chem. Commun., 1983, 479-480. [39] M. Masui, S. Hara, T. Ueshima, T. Kawaguchi, S. Ozaki,Chem. Pharm. Bull., 1983, 31, 4209-4211. [40] M. Masui, T. Kawaguchi, S. Ozaki,J. Chem. Soc. Chem. Commun., 1985, 1484-1485. [41] M. Masui, K. Hosomi, K. Tsuchida, S. Ozaki,Chem. Pharm. Bull., 1985, 33, 4798-4802. [42] C. Ueda, M. Noyama, H. Ohmori, M. Masui,Chem. Pharm. Bull., 1987, 35, 1372-1377. [43] R. G. Agarwal, S. C. Coste, B. D. Groff, A. M. Heuer, H. Noh, G. A. Parada, C. F. Wise, E. M. Nichols, J. J. Warren, J. M. Mayer,Chem. Rev., 2022, 122, 1-49. [44] C. Yang, L.A. Farmer, D.A. Pratt, S. Maldonado, C. R. J.Stephenson,J. Am. Chem. Soc., 2021, 143, 10324-10332. [45] C. Yang, S. Arora, S. Maldonado, D. A. Pratt, C. R. J.Stephenson,Nat. Rev. Chem., 2023, 7, 653-666. [46] E. Baciocchi, M. Bietti, C. D’Alfonso, O. Lanzalunga, A. Lapi, M. Salamone,Org. Biomol. Chem., 2011, 9, 4085-4090. [47] S. Kishioka, A. Yamada,Electrochim. Acta, 2006, 51, 4582-4588. [48] O. Kushch, I. Hordieieva, K. Novikova, Y. Litvinov, M. Kompanets, A. Shendrik, I. Opeida,J. Org. Chem., 2020, 85, 7112-7124. [49] M. Nechab, C. Einhorn, J. Einhorn,Chem. Commun., 2004, 1500-1501. [50] G.da Silva, J. W. Bozzelli,J. Phys. Chem. C, 2007, 111, 5760-5765. [51] R. Arnaud, A. Milet, C. Adamo, C. Einhorn, J. Einhorn,J. Chem. Soc. Perkin Trans. 2, 2002, 1967-1972. [52] T. Newhouse, P. S. Baran,Angew. Chem. Int. Ed., 2011, 50, 3362-3374. [53] C. Yang, L. A. Farmer, E. M.McFee, R. K. Jha, S. Maldonado, D. A. Pratt, C. R. J. Stephenson,Angew. Chem. Int. Ed., 2024, 63, e202315917. [54] E. J. Horn, B. R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran,Nature, 2016, 533, 77-81. [55] D. P. Hruszkewycz, K. C. Miles, O. R. Thiel, S. S. Stahl,Chem. Sci., 2017, 8, 1282-1287. [56] Y. Wang, Z. Lin, J. C. A.Oliveira, L. Ackermann,J. Org. Chem., 2021, 86, 15935-15945. |
[1] | Jialin Wang, Kaini Zhang, Ta Thi Thuy Nga, Yiqing Wang, Yuchuan Shi, Daixing Wei, Chung-Li Dong, Shaohua Shen. Chalcogen heteroatoms doped nickel-nitrogen-carbon single-atom catalysts with asymmetric coordination for efficient electrochemical CO2 reduction [J]. Chinese Journal of Catalysis, 2024, 64(9): 54-65. |
[2] | Zheng Wei, Guoxia Jiang, Yiwen Wang, Ganggang Li, Zhongshen Zhang, Jie Cheng, Fenglian Zhang, Zhengping Hao. Asymmetric oxygen vacancies in La2FeMO6 double perovskite for boosting oxygen activation and H2S selective oxidation [J]. Chinese Journal of Catalysis, 2024, 62(7): 198-208. |
[3] | Jing Yan, Jiaqi Ni, Hongli Sun, Chenliang Su, Bin Liu. Progress in tracking electrochemical CO2 reduction intermediates over single-atom catalysts using operando ATR-SEIRAS [J]. Chinese Journal of Catalysis, 2024, 62(7): 32-52. |
[4] | Wei Xu, Chao Zhen, Huaze Zhu, Tingting Yao, Jianhang Qiu, Yan Liang, Shuo Bai, Chunlin Chen, Hui-Ming Cheng, Gang Liu. A Ta3N5 photoanode with few deep-level defects derived from topologic transition of ammonium tantalum oxyfluoride for ultralow-bias photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 61(6): 144-153. |
[5] | Chao Feng, Yanbo Li. Self-healing mechanisms toward stable photoelectrochemical water splitting [J]. Chinese Journal of Catalysis, 2024, 60(5): 158-170. |
[6] | Mu-Lin Li, Yi-Meng Xie, Jingting Song, Ji Yang, Jin-Chao Dong, Jian-Feng Li. Ammonia electrosynthesis on carbon-supported metal single-atom catalysts [J]. Chinese Journal of Catalysis, 2024, 60(5): 42-67. |
[7] | Zidong Wei, Xun Huang, Haohong Duan, Mingfei Shao, Rengui Li, Jinli Zhang, Can Li, Xue Duan. Electrochemical synthesis in company with hydrogen production via renewable energy: Opportunities and challenges [J]. Chinese Journal of Catalysis, 2024, 58(3): 1-6. |
[8] | Zhentao Tu, Xiaoyang He, Xuan Liu, Dengke Xiong, Juan Zuo, Deli Wu, Jianying Wang, Zuofeng Chen. Electronic modification of Ni active sites by W for selective benzylamine oxidation and concurrent hydrogen production [J]. Chinese Journal of Catalysis, 2024, 58(3): 146-156. |
[9] | Bing Zeng, Fengwei Huang, Yuexin Wang, Kanghui Xiong, Xianjun Lang. TEMPO radically expedites the conversion of sulfides to sulfoxides by pyrene-based metal-organic framework photocatalysis [J]. Chinese Journal of Catalysis, 2024, 58(3): 226-236. |
[10] | Yan Duan, Mifeng Xue, Bin Liu, Man Zhang, Yuchen Wang, Baojun Wang, Riguang Zhang, Kai Yan. Integration of theory prediction and experimental electrooxidation of glycerol on NiCo2O4 nanosheets [J]. Chinese Journal of Catalysis, 2024, 57(2): 68-79. |
[11] | Xiangqi Zhou, Lili Li, Jun-Gang Wang, Zhanbo Li, Xiji Shao, Fupeng Cheng, Linjuan Zhang, Jian-Qiang Wang, Akhil Jain, Tao Lin, Chao Jing. Unraveling the electro-oxidation steps of methanol on a single nanoparticle by in situ nanoplasmonic scattering spectroscopy [J]. Chinese Journal of Catalysis, 2024, 57(2): 59-67. |
[12] | Xin Kang, Qiangmin Yu, Tianhao Zhang, Shuqi Hu, Heming Liu, Zhiyuan Zhang, Bilu Liu. A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution [J]. Chinese Journal of Catalysis, 2024, 56(1): 9-24. |
[13] | Yi Wang, Shuo Wang, Yunfan Fu, Jiaqi Sang, Yipeng Zang, Pengfei Wei, Hefei Li, Guoxiong Wang, Xinhe Bao. Synergistic catalytic conversion of nitrate into ammonia on copper phthalocyanine and FeNC two-component catalyst [J]. Chinese Journal of Catalysis, 2024, 56(1): 104-113. |
[14] | Zhipeng Guan, Dongfeng Yang, Zhao Liu, Shuxiang Zhu, Xingxing Zhong, Huamin Wang, Xiangwei Li, Xiaotian Qi, Hong Yi, Aiwen Lei. Regioselective electrochemical oxidative radical ortho-(4 + 2)/ipso-(3 + 2) cyclization [J]. Chinese Journal of Catalysis, 2023, 52(9): 144-153. |
[15] | Bo Zhou, Jianqiao Shi, Yimin Jiang, Lei Xiao, Yuxuan Lu, Fan Dong, Chen Chen, Tehua Wang, Shuangyin Wang, Yuqin Zou. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density [J]. Chinese Journal of Catalysis, 2023, 50(7): 372-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||