醛类化合物是重要的化学中间体, 广泛应用于医药、聚合物、有机合成及精细化工等领域. 传统的醛类制备方法主要依赖于伯醇的化学氧化, 但该方法通常需要使用有毒氧化剂并会产生有害废弃物, 存在较大的安全和环境风险. 相比之下, 电化学氧化作为一种由清洁能源驱动的绿色转化策略, 能够在温和条件下实现醇至醛的高效转化, 展现出良好的环境友好性和经济可行性. 然而, 醛类产物具有热力学易氧化特性, 且在碱性条件下易发生坎尼扎罗歧化反应, 导致目标醛类产物的生成充满挑战. 以生物质衍生甘油为原料的电化学氧化合成甘油醛(GLAD)为例, 即使采用性能优异的贵金属基催化剂, 生成醛类产品的结果仍不理想(选择性普遍低于50%, 电流密度不足10 mA cm−2).
氧化还原介导的间接电化学氧化是一种有效的替代策略. 在该过程中, 氧化还原介质作为电子穿梭体, 在电极与底物之间传递电子, 能够有效避免底物与电极的直接接触, 从而避免醛类产物的过度氧化. 基于此, 本文提出了一种无金属催化剂参与的氧化还原介导电氧化策略, 选用2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)作为氧化还原介体, 实现了高效的醇类电化学氧化至醛类产物. 利用循环伏安法系统研究了TEMPO在宽pH范围(3.75−11.00)内的氧化还原行为及热/动力学特性, 绘制了TEMPO体系的布拜图, 明确了关键氧化还原电对(TEMPO+/TEMPO, TEMPO/TEMPOH, TEMPO/TEMPOH2+)的电位-pH依赖关系和电子-质子转移特性, 从而为介导电氧化反应提供理论依据. 在此基础上, 进一步探索了不同pH条件下TEMPO介导甘油电氧化反应的催化性能. 在酸性条件下, 受限于TEMPOH2+向TEMPO的缓慢动力学再生过程; 而在碱性条件下, 醛类产物容易发生坎尼扎罗歧化, 导致GLAD选择性显著下降. 最终结果表明, 该反应在中性条件(pH = 7.00)下具有最优的反应性能, GLAD法拉第效率超过90%, 偏电流密度达到23.25 mA cm−2, 显著优于大多数贵金属基直接电氧化体系. 此外, 该策略具有良好的普适性, 可有效拓展至苯甲醇和糠醇氧化反应, 分别实现了接近100%的苯甲醛和糠醛选择性.
综上, 本文发展了一种TEMPO介导的电化学醇氧化策略, 实现了醛类产物的高效合成, 解决了直接电化学氧化反应的技术难题, 并突破了传统电化学制备醛类产品的性能限制. 该策略为传统醛类产品的有机合成提供了一种可持续且环境友好的替代方案.