过氧化氢(H2O2)作为一种环保氧化剂, 在废水处理、医疗消毒和绿色化学合成等方面具有重要应用. 目前, H2O2的工业生产主要依赖于蒽醌工艺, 但该工艺的多步加氢-氧化循环存在高能耗和产生有毒副产物的局限性. 近年来, 只需要水、氧气和太阳能为原料的光催化合成技术被认为是一种由纯水合成H2O2的有效策略. 然而, 在没有牺牲剂的纯水体系中, 现有的光催化体系通常受到高激子结合能、载流子复合严重和竞争性反应途径的限制, 导致H2O2产率和选择性达不到实际要求. 目前的研究主要集中在提高光催化氧还原产H2O2途径, 对光催化水氧化产H2O2途径的开发利用比较有限. 如何促进激子解离, 使自由载流子能有效参与纯水中的双路径光催化反应, 从而实现H2O2的高效合成, 仍是当前亟待解决的难题.
针对上述挑战, 本文通过对催化剂各组分的多功能化设计, 采用水热法和煅烧法制备了负载碳点且富含S空位的ZnIn2S4催化剂(H-CDs/ZIS-Vs). 该催化剂能够高效解离激子、定向分离光生载流子, 同时提升对反应中间产物的吸附能力, 从而有效驱动氧还原与水氧化协同的双路径反应, 提高表面生成H2O2的反应选择性. 通过一系列理化性质表征测试证实了H-CDs/ZIS-Vs微米花中S空位的形成和碳点的成功引入. 光催化产H2O2测试表明, 在纯水中不额外通气时, H-CDs/ZIS-Vs表现出了较高的H2O2产率, 是初始ZnIn2S4(ZIS)的6倍. 理论计算和变温荧光结果清楚地表明, H-CDs和S空位的存在调节了ZnIn2S4的局部电荷密度, 显着降低了激子结合能并促进了激子解离的发生. 紫外-可见漫反射光谱和能带结构分析结果表明, H-CDs和S空位的引入拓宽了ZnIn2S4的可见光吸收范围, 并且其能带结构在热力学上能够同时满足驱动氧还原反应(ORR)和水氧化反应(WOR)的要求. 表面光电压和瞬态光电压光谱结果表明, S空位与H-CDs能分别作为电子和空穴的有效捕获位点, 显著抑制光生电子-空穴对的复合. 光电性能测试与时间分辨光致发光光谱结果均表明, H-CDs/ZIS-Vs中的光生载流子分离效率显著提高, 同时其对H2O2的生成选择性也更高. O2程序升温脱附(O2-TPD)曲线表明, H-CDs/ZIS-Vs具有更强的氧气吸附能力, 这有利于氧气参与光催化生成H2O2的反应. 同位素标记和捕获实验结果表明, 光催化氧还原反应与水氧化反应在H2O2的生成过程中均起着关键作用, 并且双电子反应路径被确定为主要贡献机制. 原位漫反射红外光谱结果表明, 在光催化产H2O2过程中检测到了*OH, *·O2‒, *OOH, *HOOH吸附态中间体的存在. 结合理论计算进一步证实, H-CDs/ZIS-Vs具有更适宜的微观结构, 能够有效吸附并转化双通道光催化生成H2O2过程中的各种中间产物.
综上, 本文通过硫空位和碳点的耦合促进了激子的解离并使自由载流子参与到光催化双通道产H2O2反应当中, 实现了H2O2的高效合成. 本研究详细阐明了激子解离与自由光生载流子参与H2O2合成的微观过程, 不仅为设计高效光催化剂提供了理论指导, 也为在复杂光催化反应中协同优化激子效应与界面工程开辟了新方向.