催化学报 ›› 2008, Vol. 29 ›› Issue (4): 356-360.

• 研究论文 • 上一篇    下一篇

Si掺杂介孔SO2-4/TiO2的非模板剂法合成及表征

陈垚翰,沈俊,张昭   

  1. 四川大学化工学院, 四川成都 610065
  • 收稿日期:2008-04-25 出版日期:2008-04-25 发布日期:2012-03-22

Synthesis and Characterization of Silicon-Doped Mesoporous SO2-4/TiO2 without Using Organic Templates

CHEN Yaohan, SHEN Jun, ZHANG Zhao*   

  1. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
  • Received:2008-04-25 Online:2008-04-25 Published:2012-03-22

摘要: 在不使用模板剂的条件下,以工业硫酸氧钛溶液为原料合成介孔偏钛酸前驱体,再经正硅酸乙酯浸渍焙烧制备了具有良好热稳定性的Si掺杂介孔SO2-4/TiO2. 采用X射线衍射、N2吸附-脱附、扫描电镜、X射线能谱和傅里叶变换红外光谱等表征方法对样品的组成和结构进行了分析,并考察了该材料在亚甲基蓝氧化降解反应中的光催化性能. 结果表明,在焙烧过程中,被吸附在偏钛酸孔道内的正硅酸乙酯发生水解,并与偏钛酸孔壁上的自由羟基形成Ti-O-Si键; Si进入二氧化钛骨架中,对孔结构起到了支撑作用,从而提高了介孔SO2-4/TiO2的热稳定性. 700 ℃焙烧2 h后, Si掺杂介孔SO2-4/TiO2材料的比表面积仍达到189 m2/g, 平均孔径为2.8 nm. 400 ℃焙烧的样品在亚甲基蓝降解反应中表现出较好的光催化活性.

关键词: 介孔二氧化钛, 硅掺杂, 浸渍, 热稳定性, 光催化

Abstract: Mesoporous metatitanic acid was prepared from industrial TiOSO4 solution without using templates. Then Si-doped mesoporous SO2-4/TiO2 with high thermal stability was synthesized by impregnating mesoporous metatitanic acid with tetraethylorthosilicate solution and calcination. The calcined samples were characterized usingX-raydiffraction, N2 adsorption and desorption, scanning electron microscopy,X-rayphotoelectron spectroscopy, and infrared spectroscopy. The photocatalytic activity of Si-doped SO2-4/TiO2 for the degradation of methylene blue was tested. Tetraethylorthosilicate that was adsorbed in the pores of metatitanic acid formedTi-O-Sibond by reaction withfree-OHon the pore walls of metatitanic acid during calcination. Silicon atoms introduced into the framework of TiO2 act as the pore structure support, and thus the thermal stability of mesoporous SO2-4/TiO2 was improved. The sample calcined at 700 ℃ for2 hhad a surface area of 189 m2/g and an average pore diameter of 2.8 nm. The photocatalytic activity of the sample calcined at 400 ℃ was excellent.

Key words: mesoporous titanium dioxide, silicon doping, dipping, thermal stability, photocatalysis