催化学报 ›› 2010, Vol. 31 ›› Issue (8): 1006-1012.DOI: 10.1016/S1872-2067(10)60101-5

• 研究论文 • 上一篇    下一篇

制备方法对 LaMn0.8Mg0.2O3 钙钛矿型氧化物催化甲烷燃烧反应性能的影响

朱琳琳, 卢冠忠, 王艳芹, 郭耘, 郭杨龙   

  1. 华东理工大学结构可控先进功能材料及其制备教育部重点实验室, 工业催化研究所, 上海 200237
  • 收稿日期:2010-04-29 出版日期:2010-08-30 发布日期:2013-12-26
  • 通讯作者: 卢冠忠

Effects of Preparation Methods on the Catalytic Performance of LaMn0.8Mg0.2O3 Perovskite for Methane Combustion

ZHU Linlin, LU Guanzhong*, WANG Yanqin, GUO Yun, GUO Yanglong   

  1. Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, China
  • Received:2010-04-29 Online:2010-08-30 Published:2013-12-26

摘要: 分别采用甘氨酸硝酸盐法、溶胶凝胶法、共沉淀法、燃烧法以及水热法制备了钙钛矿型 LaMn0.8Mg0.2O3 复合氧化物, 用 X 射线衍射、红外光谱、H2 程序升温还原和低温 N2 吸附对其进行了表征, 并考察了其对甲烷燃烧的催化活性. 结果表明, 制备方法和焙烧温度对 LaMn0.8Mg0.2O3 钙钛矿型催化剂的结构、晶粒大小和不同类型的氧物种影响很大. 以甘氨酸硝酸盐法制备的钙钛矿型催化剂经 700 °C 焙烧后表现出最高的催化活性, T50 (甲烷转化率达到 50% 时的温度) 仅为 440 °C. 这归结于它较小的晶粒尺寸 (12.4 nm) 和较大的比表面积 (18.6 m2/g), 以及催化剂表面富集的 Mn4+, 从而使表面氧物种更容易移动和/或更具有反应活性.

关键词: LaMn0.8Mg0.2O3, 钙钛矿型催化剂, 制备方法, 焙烧温度, 甲烷燃烧

Abstract: A perovskite-type composite oxide, LaMn0.8Mg0.2O3, was prepared by five methods, i.e., glycine-nitrate, sol-gel, co-precipitation, combustion synthesis, and hydrothermal treatment. The composites were characterized by X-ray diffraction, Fourier transform infrared spec-troscopy, H2-temperature-programmed reduction, and N2 adsorption-desorption isotherms. The catalytic activity of LaMn0.8Mg0.2O3 toward methane combustion was evaluated. The results show that the different preparation methods and calcination temperatures greatly influence the textural structure, crystallite size, and different oxygen species within the LaMn0.8Mg0.2O3 perovskite material. The perovskite catalyst synthesized by the glycine-nitrate method and calcined at 700 °C shows the best activity for methane combustion among the tested materials. Its T50 (the reaction temperature at which 50% CH4 is converted) is only ~440 °C. This good catalyst performance can be attributed to the small crystallite size (12.4 nm), larger surface area (18.6 m2/g), and high concentration of surface Mn4+ cations, which creates more flexible and reactive surface oxygen species.

Key words: LaMn0.8Mg0.2O3, perovskite catalyst, preparation method, calcination temperature, methane combustion