催化学报 ›› 2010, Vol. 31 ›› Issue (10): 1300-1304.DOI: 10.3724/SP.J.1088.2010.00418

• 研究论文 • 上一篇    

热处理气氛对 TiO2 纳米管阵列薄膜光电催化性能的影响

张溪 1 , 凌云汉 2, 廖雷 1, 牛致远 2, 陈诗蕾 2, 赵成根 1   

  1. 1桂林理工大学环境科学与工程学院, 广西桂林 541004; 2清华大学材料科学与工程系, 北京 100084
  • 收稿日期:2010-10-25 出版日期:2010-10-25 发布日期:2014-03-04

Effect of Heat Treatment on the Photoelectrocatalytic Performance of TiO2 Nanotube Array Film

ZHANG Xi1, LING Yunhan2,*, LIAO Lei1, NIU Zhiyuan2, CHEN Shilei2, ZHAO Chenggen1   

  1. 1College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China; 2Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
  • Received:2010-10-25 Online:2010-10-25 Published:2014-03-04

摘要: 采用原位阳极氧化法在 Ti 基底上制备了高度有序的 TiO2 纳米管阵列薄膜, 分别在 O2, 空气, Ar 和 H2 气氛中于 500 oC 进行结晶热处理, 考察了热处理气氛对 TiO2 纳米管阵列薄膜光电催化降解亚甲基蓝 (MB) 反应性能的影响. 结果表明, 在这些气氛中热处理得到的锐钛矿晶型的纳米管阵列薄膜对 MB 降解满足一级反应, 其速率常数分别为 4.967, 3.127, 1.989 和 1.625 h-1 (0.5 V). 电化学阻抗分析表明, TiO2 纳米管的光电催化性能受控于光生电荷的传递特性. 在 O2 中热处理, TiO2 纳米管的光吸收及激发性能得以改善, 且电荷传递阻抗降低, 因而其光电催化性能最好.

关键词: 二氧化钛, 纳米管阵列, 阳极氧化, 光电催化, 亚甲基蓝, 热处理

Abstract: Well-aligned and uniform titanium dioxide nanotube array films were fabricated in-situ on titanium substrate by electrochemical anodic oxidation. The resulting amorphous films were crystallized and annealed at 500 oC in different atmospheres such as the oxygen, air, argon, and hydrogen. The photoelectrocatalytic performance of the as-annealed nanotube array films was investigated using methane blue (MB) as a target pollutant. The MB degradation kinetics met the law of first order reaction and the rate constants were 4.967, 3.127, 1.989, and 1.625 h-1 at 0.5 V bias, respectively. Electrochemical impedance spectroscopy analysis revealed that the MB degradation was governed by the charge transfer characteristic of the nanotube. The improvement of light absorbance and excitation and the lower transfer impedance might be critical factors for the efficient photoelectrocatalysis of TiO2 array films annealed in oxygen.

Key words: titanium dioxide, nanotube array, anodic oxidation, photoelectrocatalysis, methylene blue, heat treatment