催化学报 ›› 2013, Vol. 34 ›› Issue (3): 436-491.DOI: 10.1016/S1872-2067(12)60528-2
郑安民a, 黄信炅b, 王强a, 张海禄c, 邓风a, 刘尚斌d,e
收稿日期:
2012-06-30
修回日期:
2012-09-10
出版日期:
2013-04-02
发布日期:
2013-04-03
通讯作者:
邓风,刘尚斌
基金资助:
国家自然科学基金(20933009, 21073228, 21210005, 21103223, 21173255);台湾国科会(NSC98-2113-M-001-017-MY3, NSC101-2113-M-001-020-MY3).
ZHENG Anmina, HUANG Shing-Jongb, WANG Qianga, ZHANG Hailuc, DENG Fenga, LIU Shang-Bind,e
Received:
2012-06-30
Revised:
2012-09-10
Online:
2013-04-02
Published:
2013-04-03
Supported by:
This work was supported by the National Natural Science Foundation of China (20933009, 21073228, 21210005, 21103223, 21173255) and the National Science Council (NSC98-2113-M-001-017-MY3, NSC101-2113-M-001-020-MY3), Taiwan, China.
摘要:
固体酸催化剂广泛应用于现代石油与化学工业中,其反应活性与其酸性密切相关.与传统的酸性表征方法(红外光谱、程序升温脱附、滴定等)相比,利用先进的探针分子技术、双共振和二维相关谱等核磁共振(NMR)技术可以获取固体催化剂酸种类、酸分布、酸浓度和酸强度等完整信息.同时,原位固体NMR实验可跟踪反应分子在催化剂活性中心吸附状态和转换的中间体物种,为揭示反应机理提供了最直接的实验证据.本文详细介绍了固体NMR的原理和一系列相关新技术,着重综述了固体NMR技术在酸催化剂结构、活性中心特性以及催化反应机理方面的应用进展.
郑安民, 黄信炅, 王强, 张海禄, 邓风, 刘尚斌. 固体核磁共振技术在固体酸催化剂表征及催化反应机理研究之应用进展[J]. 催化学报, 2013, 34(3): 436-491.
ZHENG Anmin, HUANG Shing-Jong, WANG Qiang, ZHANG Hailu, DENG Feng, LIU Shang-Bin. Progress in development and application of solid-state NMR for solid acid catalysis[J]. Chinese Journal of Catalysis, 2013, 34(3): 436-491.
[1] Xin Q, Luo M F eds. Modern Catalytic Research Methods.Beijing: Science Press (辛勤, 罗孟飞. 现代催化研究方法. 北京: 科学出版社), 2009. 314 [2] Zheng A M, Huang S J, Liu S B, Deng F. Phys Chem Chem Phys, 2011, 13: 14889 [3] Yu Zh W, Zheng A M, Wang Q, Huang X J, Deng F, Liu Sh B. Chin J Magn Reson (喻志武, 郑安民, 王强, 黄信炅, 邓风, 刘尚斌. 波谱学杂志), 2010, 27: 485 [4] Peng P. Chem Ind Eng Prog (彭朴. 化工进展), 2008, 27: 157 [5] Nishiyama Y, Endo Y, Nemoto T, Utsumi H, Yamauchi K, Hioka K, Asakura T. J Magn Reson, 2011, 208: 44 [6] Metz G, Wu X L, Smith S O. J Magn Reson Ser A, 1994, 110: 219 [7] Hediger S, Meier B H, Ernst R R. Chem Phys Lett, 1995, 240: 449 [8] Bennett A E, Rienstra C M, Auger M, Lakshmi K V, Griffin R G. J Chem Phys, 1995, 103: 6951 [9] Ashida J, Asakura T. J Magn Reson, 2003, 165: 180 [10] Fung B M, Khitrin A K, Ermolaev K. J Magn Reson, 2000, 142: 97 [11] De Paëpe G, Lesage A, Emsley L. J Chem Phys, 2003, 119: 4833 [12] Waugh J S, Huber L M, Haeberlen U. Phys Rev Lett, 1968, 20: 180 [13] Rhim W K, Elleman D D, Vaughan R W. J Chem Phys, 1973, 58: 1772 [14] Burum D P, Rhim W K. J Chem Phys, 1979, 71: 944 [15] Burum D P, Bielecki A. J Magn Reson, 1991, 94: 645 [16] Lee M, Goldburg W I. Phys Rev, 1965, 140: 1261 [17] Bielecki A, Kolbert A C, Levitt M H. Chem Phys Lett, 1989, 155: 341 [18] Vinogradov E, Madhu P K, Vega S. Chem Phys Lett, 1999, 314: 443 [19] Sakellariou D, Lesage A, Hodgkinson P, Emsley L. Chem Phys Lett, 2000, 319: 253 [20] Taylor R E, Pembleton R G, Ryan L M, Gerstein B C. J Chem Phys, 1979, 71: 4541 [21] Ryon L M, Taylor R E, Paff A J, Gerstein B C. J Chem Phys, 1980, 72: 508 [22] Samoson A, Lippmaa E, Pines A. Mol Phys, 1988, 65: 1013 [23] Mueller K T, Sun B Q, Chingas G C, Zwanziger J W, Terao T, Pines A. J Magn Reson, 1990, 86: 470 [24] Chmelka B F, Mueller K T, Pines A, Stebbins J, Wu Y, Zwanziger J W. Nature, 1989, 339:42 [25] Wu Y, Sun B Q, Pines A, Samoson A, Lippmaa E. J Magn Reson, 1990, 89: 297 [26] Frydman L, Harwood J S. J Am Chem Soc, 1995, 117: 5367 [27] Drobny G, Pines A, Sinton S, Weitekamp D P, Wemmer D. Faraday Symp Chem Soc, 1979, 13: 49 [28] Madhu P K, Goldbourt A, Frydman L, Vega S. Chem Phys Lett, 1999, 307: 41 [29] Iuga D, Kentgens A P M. J Magn Reson, 2002, 158: 65 [30] Siegel R, Nakashima T T, Wasylishen R E. Chem Phys Lett, 2006, 421: 529 [31] Gan Z H. J Am Chem Soc, 2000, 122: 3242 [32] Gullion T, Schaefer J. J Magn Reson, 1989, 81: 196 [33] Grey C P, Eijkelenboom A P M, Veeman W S. Solid State Nucl Magn, 1995, 4: 113 [34] Grey C P, Vega A J. J Am Chem Soc, 1995, 117: 8232 [35] Gullion T. Chem Phys Lett, 1995, 246: 325 [36] Gan Z H. Chem Commun, 2006: 4712 [37] Chen L, Wang Q, Hu B W, Lafon O, Trebosc J, Deng F, Amoureux J P. Phys Chem Chem Phys, 2010, 12: 9395 [38] Chen L, Lu X Y, Wang Q, Lafon O, Trebosc J, Deng F, Amoureux J P. J Magn Reson, 2010, 206: 269 [39] Tycko R, Dabbagh G. Chem Phys Lett, 1990, 173: 461 [40] Bennett A E, Ok J H, Griffin R G, Vega S. J Chem Phys, 1992, 96: 8624 [41] Raleigh D P, Levitt M H, Griffin R G. Chem Phys Lett, 1988, 146: 71 [42] Rienstra C M, Hatcher M E, Mueller L J, Sun B Q, Fesik S W, Griffin R G. J Am Chem Soc, 1998, 120: 10602 [43] Hohwy M, Jakobsen H J, Eden M, Levitt M H, Nielsen N C. J Chem Phys, 1998, 108: 2686 [44] Brinkmann A, Levitt M H. J Chem Phys, 2001, 115: 357 [45] Brinkmann A, Eden M, Levitt M H. J Chem Phys, 2000, 112: 8539 [46] Carravetta M, Eden M, Zhao X, Brinkmann A, Levitt M H. Chem Phys Lett, 2000, 321: 205 [47] Levitt M H. J Chem Phys, 2008, 128: 052250/1 [48] Jiang Y J, Huang J, Dai W L, Hunger M. Solid State Nucl Magn Re-son, 2011, 39: 116 [49] Hunger M. In: Chester A W, Derouanne E G eds.Zeolite Characterization and Catalysis-A Tutorial. Chap 2.Berlin:Springer-Verlag, 2009. 65-106 [50] Wang J, Huang W X, Wang Y F, Liu D Y. Chin J Magn Reson (王京, 黄蔚霞, 王永峰, 刘冬云. 波谱学杂志), 2004, 21: 527 [51] Engelhardt G, Michel D. High-Resolution Solid-State NMR of Silicates and Zeolites.New York: John Wiley & Son, 1987 [52] Koller H, Weib M. Top Curr Chem, 2012, 306: 189 [53] Dogan F, Hammond K D, Tompsett G A, Huo H, Conner W C Jr, Auerbach S M, Grey C P. J Am Chem Soc, 2009, 131: 11062 [54] Hammond K D, Dogan F, Tompsett G A, Agarwal V, Conner W C, Grey C P, Auerbach S M. J Am Chem Soc, 2008, 130: 14912 [55] Hammond K D, Gharibeh M, Tompsett G A, Dogan F, Brown A V, Grey C P, Auerbach S M, Conner W C. Chem Mater, 2010, 22: 130 [56] Fyfe C A, Feng Y, Grondey H, Kokotailo G T, Gies H. Chem Rev, 1991, 91: 1525 [57] Fyfe C A, Feng Y, Gies H, Grondey H, Kokotailo G T. J Am Chem Soc, 1990, 112: 3264 [58] Jeener J, Meier B H, Bachmann P, Ernst R R. J Chem Phys, 979, 71: 4546 [59] Nakai T, McDowell C A. Mol Phys, 1993, 79: 965 [60] Fyfe C A, Feng Y, Grondey H. Microporous Mater, 1993, 1: 401 [61] Fyfe C A, Brouwer D H. J Am Chem Soc, 2006, 128: 11860 [62] Fyfe C A, Diaz A C, Grondey H, Lewis A R, Förster H. J Am Chem Soc, 2005, 127: 7543 [63] Brouwer D H, Kristiansen P E, Fyfe C A, Levitt M H. J Am Chem Soc, 2005, 127: 542 [64] Brouwer D H, Enright G D. J Am Chem Soc, 2008, 130: 3095 [65] Freude D, Ernst H, Wolf I. Solid State Nucl Magn, 1994, 3: 271 [66] Hunger M, Horvath T. Ber Bunsen-Ges Phys Chem, 1995, 99: 1316 [67] Wouters B H, Chen T H, Grobet P J. J Phys Chem B, 2001, 105: 1135 [68] Wouters B H, Chen T H, Grobet P J. J Am Chem Soc, 1998, 120: 11419 [69] Kunwar A C, Turner G L, Oldfield E. J Magn Reson, 1986, 69: 124 [70] Jiao J, Altwasser S, Wang W, Weitkamp J, Hunger M. J Phys Chem B, 2004, 108: 14305 [71] Kentgens A P M, Iuga D, Kalwei M, Koller H. J Am Chem Soc, 2001, 123: 2925 [72] Peng L M, Guo X F, Ding W P. Chin J Magn Reson (彭路明, 郭学锋, 丁维平. 波谱学杂志), 2009, 26: 173 [73] Timken H K C, Turner G L, Gilson J P, Welsh L B, Oldfield E. J Am Chem Soc, 1986, 108: 7231 [74] Timken H K C, Janes N, Turner G L, Lambert S L, Welsh L B, Old-field E. J Am Chem Soc, 1986, 108: 7236 [75] Ashbrook S E, Smith M E. Chem Soc Rev, 2006, 35: 718 [76] Bull L M, Bussemer B, Anupõld T, Reinhold A, Samoson A, Sauer J, Cheetham A K, Dupree R. J Am Chem Soc, 2000, 122: 4948 [77] Pingel U T, Amoureux J P, Anupold T, Bauer F, Ernst H, Fernandez C, Freude D, Samoson A. Chem Phys Lett, 1998, 294: 345 [78] Bull L M, Cheetham A K, Anupold T, Reinhold A, Samoson A, Sauer J, Bussemer B, Lee Y, Gann S, Shore J, Pines A, Dupree R. J Am Chem Soc, 1998, 120: 3510 [79] Freude D, Loeser T, Michel D, Pingel U, Prochnow D. Solid State Nucl Magn, 2001, 20: 46 [80] Loeser T, Freude D, Mabande G T P, Schwieger W. Chem Phys Lett, 2003, 370: 32 [81] Zhao P D, Neuhoff P S, Stebbins J F. Chem Phys Lett, 2001, 344: 325 [82] Stebbins J F, Zhao P D, Lee S K, Cheng X. Am Mineral, 1999, 84: 1680 [83] Peng L M, Liu Y, Kim N, Readman J E, Grey C P. Nat Mater, 2005, 4: 216 [84] Peng L M, Huo H, Liu Y, Grey C P. J Am Chem Soc, 2007, 129: 335 [85] Peng L M, Huo H, Gan Z H, Grey C P. Microporous Mesoporous Mater, 2008, 109: 156 [86] Koller H, Fild C, Lobo R F. Microporous Mesoporous Mater, 2005, 79: 215 [87] Koller H. In:Occelli M Ed.Fluid Catalytic Cracking VI: Preparation and Characterization of Catalysts.Vol. 149. Amsterdam:Elsevier,2004. 105 [88] Reddy Marthala V R, Wang W, Jiao J, Jiang Y J, Huang J, Hunger M. Microporous Mesoporous Mater, 2007, 99: 91 [89] Zhang W P, Xu S T, Han X W, Bao X H. Chem Soc Rev, 2012, 41:192 [90] Pfeifer H, Ernst H. Ann Rep NMR Spectro, 1993, 5: 28 [91] Hunger M. Catal Rev-Sci Eng, 1997, 39: 345 [92] Freude D, Hunger M, Pfeifer H, Schwieger W. Chem Phys Lett, 1986, 128: 62 [93] Deng F, Yue Y, Ye C H. Solod State Nucl Magn, 1998, 10: 151 [94] Liu X Y, Ding Sh F, Pan H F, Wang J. Chin J Magn Reson (刘兴玉, 丁淑芳, 潘惠芳,王京. 波谱学杂志), 2004, 21: 237 [95] Li S H, Zheng A M, Su Y C, Zhang H L, Chen L, Yang J, Ye C H, Deng F. J Am Chem Soc, 2007, 129: 11161 [96] Yu Z W, Zheng A M, Wang Q, Deng F. Chem J Chin Univ (喻志武, 郑安民, 王强, 邓风. 高等学校化学学报), 2011, 32: 47l [97] Wang Q, Hu B, Lafon O, Trébosc J, Deng F, Amoureux J P. J Magn Reson, 2009, 200: 251. [98] Yu Z W, Zheng A M, Wang Q, Chen L, Xu J, Amoureux J P, Deng F. Angew Chem, Int Ed, 2010, 49: 8657 [99] Xu M C, Arnold A, Buchholz A, Wang W, Hunger M. J Phys Chem B, 2002, 106: 12140 [100] Zheng A M, Zhang H L, Chen L, Yue Y, Ye Ch, Deng F. J Phys Chem B, 2007, 111: 3085 [101] Filek U, Bressel A, Sulikowski B, Hunger M. J Phys Chem C, 2008, 112: 19470 [102] Yang J, Janik M J, Ma D, Zheng A M, Zhang M G, Neurock M, Davis R J, Ye C H, Deng F. J Am Chem Soc, 2005, 127: 18274 [103] Hawkes G E, Herwig K, Roberts J D. J Org Chem, 1974, 39: 1017 [104] Olah G A, White A M. J Am Chem Soc, 1969, 91: 5801 [105] Xu T, Torres P D, Beck L W, Haw J F. J Am Chem Soc, 1995, 117: 8027 [106] Haw J F, Nicholas J B, Xu T, Beck L W, Ferguson D B. Acc Chem Res, 1996, 29: 259 [107] Barich D H, Nicholas J B, Xu T, Haw J F. J Am Chem Soc, 1998, 120: 12342 [108] Hu B, Gay I D. J Phys Chem B, 2001, 105: 217 [109] Haw J F, Zhang J, Shimizu K, Venkatraman T N, Luigi D P, Song W, Barich D H, Nicholas J B. J Am Chem Soc, 2000, 122: 12561 [110] Kao H M, Grey C P. Chem Phys Lett, 1996, 259: 459 [111] Zhao Q, Chen W H, Huang S J, Wu Y C, Lee H K, Liu S B. J Phys Chem B, 2002, 106: 4462 [112] Lunsford J H, Rothwell W P, Shen W. J Am Chem Soc, 1985, 107: 1540 [113] Chu Y Y, Yu Z W, Zheng A M, Fang H J, Zhang H L, Huang S J, Liu S B, Deng F. J Phys Chem C, 2011, 115: 7660 [114] Zhang W P, Han X W, Liu X M, Bao X H. J Mol Catal A, 2003, 194: 107 [115] Kao H M, Liu H M, Jiang J C, Lin S H, Grey C P. J Phys Chem B, 2000, 104: 4923 [116] Hu W, Luo Q, Li S H, Shen W L, Yue Y, Deng F. Acta Phy-Chim Sin, 2006, 22: 233 [117] Kao H C, Yu C Y, Yeh M C. Microporous Mesoporous Mater, 2002, 53: 1 [118] Yang G, Zhuang J Q, Ma D, Lan X J, Zhou L J, Liu X C, Han X W, Bao X H. J Mol Struct, 2008, 882: 24 [119] Yang G, Lan X J, Zhuang J Q, Ma D, Zhou L J, Liu X C, Han X W, Bao X H. Appl Catal A, 2008, 337: 58 [120] Hu W, Luo Q, Su Y C, Chen L, Yue Y, Ye C H, Deng F. Microporous Mesoporous Mater, 2006, 92: 22 [121] Luo Q, Deng F, Yuan Z Y, Yang J, Zhang M J, Yue Y, Ye C H. J Phys Chem B, 2003, 107: 2435 [122] Riemer T, Knozinger H. J Phys Chem, 1996, 100: 6739 [123] Yang J, Zhang M J, Deng F, Luo Q, Yi D L, Ye C H. Chem Commun, 2003: 884 [124] Zhang H L, Yu H G, Zheng A M, Li S H, Shen W L, Deng F. Environ Sci Technol, 2008, 42: 5316 [125] Xu J, Zheng A M, Yang J, Su Y C, Wang J Q, Zeng D L, Zhang M J, Ye C H, Deng F. J Phys Chem B, 2006, 110: 10662 [126] Chen W H, Tsai T C, Jong S J, Zhao Q, Tsai C T, Wang I, Lee H K, Liu S B. J Mol Catal A, 2002, 181: 41 [127] Chen W H, Ko H S, Sakthivel A, Huang S J, Liu S B, Lo A Y, Tsai T C, Liu S B. Catal Today, 2006, 116: 111 [128] Guan J, Li X J, Yang G, Zhang W P, Liu X C, Han X W, Bao X H. J Mol Catal A, 2009, 310: 113 [129] Peng L M, Chupas P J, Grey C P. J Am Chem Soc, 2004, 126: 12254 [130] Zheng A M, Huang S J, Chen W H, Wu P H, Zhang H, Lee H K, de Ménorval L C, Deng F, Liu S B. J Phys Chem A, 2008, 112: 7349 [131] Kao H M, Chang P C, Liao Y W, Lee L P, Chien C H. Microporous Mesoporous Mater, 2008, 114: 352 [132] Zhao Q, Chen W H, Huang S J, Liu S B. Stud Surf Sci Catal, 2003, 145: 205 [133] Huang S J, Zhao Q, Chen W H, Han X, Bao X, Lo P S, Lee H K, Liu S B. Catal Today, 2004, 97: 25 [134] Chen W H, Huang S J, Lai C S, Tsai T C, Lee H K, Liu S B. Res Chem Interm, 2003, 29: 761 [135] Rakiewicz E F, Peters A W, Wormsbecher R F, Sutovich K J, Mueller K T. J Phys Chem B, 1998, 102: 2890 [136] Margolese D, Melero J A, Christiansen S C, Chmelka B F, Stucky G D. Chem Mater, 2000, 12: 2448 [137] Ko H H. [MS Dissertation]Taipei:Chinese Culture University, 2005 [138] Bauer F, Chen W H, Ernst H, Huang S J, Freyer A, Liu S B. Micro-porous Mesoporous Mater, 2004, 72: 81 [139] Bauer F, Chen W H, Bilz E, Huang S J, Freyer A, Sauerland V, Liu S B. J Catal, 2007, 251: 258 [140] Chen W H, Huang S J, Sakthivel A, Naik S P, Chiang A S T, Liu S B. In:Champion Y, Fecht H J eds.Nano-Architectured and Nano-structrued Materials: Fabrication, Control and Proper-ties.Germany: Wiley-VCH, 2004. 127 [141] Chen W H, Huang S J, Ko H H, Lo A Y, Lee H K, Wu L L, Cheng C F, Liu S B. Stud Surf Sci Catal, 2005, 156: 657 [142] Zheng A M, Chen L, Yang J, Zhang M J, Su Y C, Yue Y, Ye C H, Deng F. J Phys Chem B, 2005, 109: 24273 [143] Zhao Q, Chen W H, Huang S J, Wu Y C, Lee H K, Liu S B. Stud Surf Sci Catal, 2002, 141: 453 [144] Wang J Q, Yu N Y, Zheng A M, Yang J, Wu D, Sun Y H, Ye C H, Deng F. Microporous Mesoporous Mater, 2006, 89: 219 [145] Huang S J, Yang C Y, Zheng A M, Feng N D, Yu N Y, Wu P H, Chang Y C, Lin Y C, Deng F, Liu S B. Chem-Asian J, 2011, 6: 137 [146] Feng N D, Zheng A M, Huang S J, Zhang H L, Yu N Y, Yang C Y, Liu S B, Deng F. J Phys Chem C, 2010, 114: 15464 [147] Zeng D L, Fang H J, Zheng A M, Xu J, Chen L, Yang J, Wang J Q, Ye C H, Deng F. J Mol Catal A, 2007, 270: 257 [148] Pines A, Gibby M G, Waugh J S. J Chem Phys, 1973, 59: 569 [149] Schaefer J, Stejskal E O. J Am Chem Soc, 1976, 98: 1031 [150] Gullion T, Schaefer J. Adv Magn Reson, 1989, 13: 57 [151] Karra M D, Sutovich K J, Mueller K T. J Am Chem Soc, 2002, 124: 902 [152] Leononwica M E, Lawton J A, Rubin M K. Science, 1994, 264: 1910 [153] Tagusagawa C, Takagaki A, Takanabe K, Ebitani K, Hayashi S, Domen K. J Catal, 2010, 270: 206 [154] Tagusagawa C, Takagaki A, Iguchi A, Takanabe K, Kondo J N, Ebitani K, Hayashi S, Tatsumi T, Domen K. Agnew Chem, Int Ed, 2010, 49: 1128 [155] Huang S J, Tseng Y H, Mou Y, Liu S B, Huang S H, Lin C P, Chan J C C. Solid State Nucl Magn Reson, 2006, 29: 272 [156] Zheng A M, Zhang H L, Lu X, Liu S B, Deng F. J Phys Chem B, 2008, 112: 4496 [157] Webster C E, Drago R S, Zerner M C. J Am Chem Soc, 1998, 120: 5509 [158] Huang J, Jiang Y J, Reddy Marthala V, Ooi Y, Weitkamp J, Hunger M. Microporous Mesoporous Mater, 2007, 104: 129 [159] Huang J, Jiang Y J, Reddy Marthala V R, Thomas B, Romanova E, Hunger M. J Phys Chem C, 2008, 112: 3811 [160] Yi D L, Zhang H L, Deng Z W. J Mol Catal A, 2010, 326: 88 [161] Zhang W P, Ma D, Liu X C, Liu X M, Bao X H. Chem Commun, 1999: 1091 [162] Nicholas J B. Top Catal, 1999, 9: 181 [163] Kramer G J, Vansanten R A, Emeis C A, Nowak A K. Nature, 1993, 363: 529 [164] Zheng X B, Blowers P. J Mol Catal A, 2005, 229: 77 [165] Zheng X B, Blowers P. J Phys Chem A, 2005, 109: 10734 [166] Fang H J, Zheng A M, Chu Y Y, Deng F. J Phys Chem C, 2010, 114: 12711 [167] Brand H V, Curtiss L A, Iton L E. J Phys Chem, 1993, 97: 12773 [168] Biaglow A I, Gorte R J, Kokotailo G T, White D. J Catal, 1994, 148: 779 [169] Yang J, Zheng A M, Zhang M J, Luo Q, Yue Y, Ye C H, Lu X, Deng F. J Phys Chem B, 2005, 109: 13124 [170] Xu T, Kob N, Drago R S, Nicholas J B, Haw J F. J Am Chem Soc, 1997, 119: 12231 [171] Chu Y Y, Han B, Fang H J, Zheng A M, Deng F. Microporous Meso-porous Mater, 2012, 151: 241 [172] Zheng A M, Liu S B, Deng F. J Phys Chem C, 2009, 113: 15018 [173] Zheng A M, Chen L, Yang J, Yue Y, Ye C H, Lu X, Deng F. Chem Commun, 2005: 2474 [174] Wu Z Q, Zheng A M, Yang J, Feng D. Chin J Magn Reson (邬忠琴, 郑安民, 杨俊, 邓风. 波谱学杂志), 2007, 24: 501 [175] Zheng A M, Deng F, Liu S B. Catal Today, 2011, 64: 40 [176] Fang H J, Zheng A M, Li S H, Xu J, Chen L, Deng F. J Phys Chem C, 2010, 114: 10254 [177] Fang H J, Zheng A M, Xu J, Li S H, Chu Y Y, Chen L, Deng F. J Phys Chem C, 2011, 115: 7429 [178] Zheng A M, Liu S B, Deng F. Microporous Mesoporous Mater, 2009, 121: 158 [179] Zheng AM, Wang L, Chen L, Yue Y, Ye C H, Lu X, Deng F. Chem-PhysChem, 2007, 8: 231 [180] Hunger M, Weitkamp J. In: Weckhuysen BM Ed. In situ Spectroscopy of Catalysts. Stevenson Ranch:American Scientific Publishers, 2004. 177-218 [181] Wang W, Hunger M. Acc Chem Res, 2008, 41: 895 [182] Xu S T, Zhang W P, Liu X M, Han X W, Bao X H. J Am Chem Soc, 2009, 131: 13722 [183] Li J Z, Wei Y X, Chen J R, Tian P, Su X, Xu S T, Qi Y, Wang Q Y, Zhou Y, He Y L, Liu Z M. J Am Chem Soc, 2012, 134: 836 [184] Zheng H, Ma D, Bao X H, Hu J Z, Kwak J H, Wang Y, Peden C H F. J Am Chem Soc, 2008, 130: 3722 [185] Wu J F, Wang W D, Xu J, Deng F, Wang W. Chem-Eur J, 2010, 16: 14016 [186] Yang J, Deng F, Zhang M J, Luo Q, Ye C H. J Mol CatalA, 2003, 202: 239 [187] Yang J, Ma D, Deng F, Luo Q, Zhang M J, Bao X H, Ye C H. Chem Commun, 2002: 3046 [188] Wang X M, Qi G D, Xu J, Li B J, Wang C, Deng F. Angew Chem, Int Ed, 2012, 51: 3850 [189] Xu S T, Zhang W P, Lan X J, Han X W, Bao X H. Chin J Magn Reson (徐舒涛, 张维萍, 兰喜杰, 韩秀文, 包信和. 波谱学杂志), 2010, 27: 141 [190] Lan X J, Zhang W P, Yan L, Ding Y J, Han X W, Lin L W, Bao X H. Chin J Magn Reson (兰喜杰, 张维萍, 严丽, 丁云杰, 韩秀文, 林励吾, 包信和. 波谱学杂志), 2009, 26: 37 [191] Zeng D L, Yang J, Zheng A M, Chen L, Xu J, Ye Ch H, Deng F. Chin J Magn Reson (曾丹林, 杨俊, 郑安民, 陈雷, 徐君, 叶朝辉, 邓风. 波谱学杂志), 2007, 24: 239 [192] Anderson M W, Klinowski J. Nature, 1989, 339: 200 [193] Carpenter T A, Klinowski J, Tilak D, Tennakoon B, Smith C J, Edwards D C. J Magn Reson, 1986, 68: 561 [194] Haw J F, Richardson B R, Oshiro I S, Lazo N D, Speed J A. J Am Chem Soc, 1989, 111: 2052 [195] Xu T, Haw J F. Top Catal, 1997, 4: 109 [196] Munson E J, Murray D K, Haw J F. J Catal, 1993, 141: 733 [197] Hwang S J, Petucci C, Raftery D. J Am Chem Soc, 1997, 119: 7877 [198] Hwang S J, Petucci C, Raftery D.J Am Chem Soc, 1998, 120: 4388 [199] Reyes-Garcia E A, Sun Y P, Reyes-Gil K, Raftery D. J Phys Chem C, 2007, 111: 2738 [200] Hwang S J, Raftery D. Catal Today, 1999, 49: 353 [201] Xu M C, Harris K D M, Thomas J M, Vaughan D E W. ChemPhys-Chem, 2007, 8: 1311 [202] Haddix G W, Reimer J A, Bell A T. J Catal, 1987, 106: 111 [203] Hunger M, Horvath T. Chem Commun, 1995: 1423 [204] Goguen P, Haw J F. J Catal, 1996, 161: 870 [205] Isbester P K, Zalusky A, Lewis D H, Douskey M C, Pomije M J, Mann K R, Munson E J. Catal Today, 1999, 49: 363 [206] Haw J F, Goguen P, Xu T, Skloss T, Song W G, Wang Z K. Angew Chem, Int Ed, 1988, 37: 948 [207] Dahlhoff G, Niederer J P M, Hoelderich W F. Catal Rev-Sci Eng, 2001, 43: 381 [208] Reddy Marthala V R, Jiang Y J, Huang J, Wang W, Glaser R, Hunger M. J Am Chem Soc, 2006, 128: 14812 [209] Nakajima A, Obata H, Kameshima Y, Okada K. Catal Commun, 2005, 11: 716 [210] Xu Y H, Wang L Y, Zhang Q, Zheng S J, Li X J, Huang C. Mater Chem Phys, 2005, 92: 470 [211] Barraud E, Bosc F, Edwards D, Keller N, Keller V. J Catal, 2005, 235: 318 [212] Wang X C, Yu J C, Liu P, Wang X X, Su W Y, Fu X Z. J Photochem Photobiol A, 2006, 179: 339 [213] Crocker M, Herold R H M, Wilson A E, Mackay M, Emeis C A, Hoogendoorn A M. J Chem Soc, Faraday Trans, 1996, 92: 2791 [214] Chary K V R, Bhaskar T, Seela K K, Lakshmi K S, Reddy K R. Appl Catal A, 2001, 208: 291 [215] Baba T, Nomura M, Oho Y, Ohno Y. J Phys Chem, 1993, 97: 12888 [216] Hunger M, Horvath T, Engelhardt G, Karger H. Stud Surf Sci Catal, 1995, 94: 756 [217] Xu W Z, Raftery D. J Phys Chem B, 2001, 105: 4343 [218] Pfeifer H, Freude, D, Hunger M. Zeolites, 1985, 5: 274 [219] Blaszkowski S, van Santen R. J Phys Chem, 1995, 99: 11728 |
[1] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[2] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[3] | Sue-Faye Ng, 陈星竹, Joel Jie Foo, 熊墨, Wee-Jun Ong. 2D氮化碳: 通过调节非金属硼掺杂C3N5阐明宽酸性及碱性pH范围的光催化析氢的反应机理[J]. 催化学报, 2023, 47(4): 150-160. |
[4] | 张丹, 石月, 陈希磊, 赖建平, 黄勃龙, 王磊. 高熵合金金属烯用于酸性条件下全水分解[J]. 催化学报, 2023, 45(2): 174-183. |
[5] | Peerapol Pornsetmetakul, Ferdy J. A. G. Coumans, Rim C. J. van de Poll, Anna Liutkova, Duangkamon Suttipat, Brahim Mezari, Chularat Wattanakit, Emiel J. M. Hensen. BEA沸石后合成金属(Sn, Zr, Hf)改性: 结合Lewis和Brønsted酸性进行级联催化[J]. 催化学报, 2023, 55(12): 200-215. |
[6] | 张宁, 杜家毅, 周纳, 王德鹏, 鲍迪, 钟海霞, 张新波. 高价金属钽掺杂无定型氧化铱用于酸性氧析出反应[J]. 催化学报, 2023, 53(10): 134-142. |
[7] | Chuncheng Liu, Evgeny A. Uslamin, Sophie H. van Vreeswijk, Irina Yarulina, Swapna Ganapathy, Bert M. Weckhuysen, Freek Kapteijn, Evgeny A. Pidko. MFI/MEL分子筛催化甲醇制烯烃反应关键参数的集成方法[J]. 催化学报, 2022, 43(7): 1879-1893. |
[8] | 姚青, 乐家波, 杨是赜, 程俊, 邵琪, 黄小青. 痕量Pt显著提升RuO2的酸性水分解性能[J]. 催化学报, 2022, 43(6): 1493-1501. |
[9] | 黄睿, 温蕴周, 彭慧胜, 张波. 解耦质子-电子传输促进Ru-Pb二元电催化剂上的OER动力学[J]. 催化学报, 2022, 43(1): 130-138. |
[10] | 曹凯鹏, 樊栋, 曾姝, 樊本汉, 陈南, 高铭斌, 朱大丽, 王林英, 田鹏, 刘中民. 无机体系合成纳米丝光沸石组装体及其优异的二甲醚羰基化催化性能[J]. 催化学报, 2021, 42(9): 1468-1477. |
[11] | 张默, 李慧杰, 张峻豪, 吕红金, 杨国昱. 基于多金属氧酸盐催化剂的光驱动产氢研究进展[J]. 催化学报, 2021, 42(6): 855-871. |
[12] | 陈必华, 丁桐, 邓熹, 王鑫, 张大卫, 马三罐, 张永亚, 倪兵, 高国华. 酸性聚离子液体溶胀诱导自组装形成类蜂窝状固体酸催化剂及其高效催化水解反应[J]. 催化学报, 2021, 42(2): 297-309. |
[13] | 贾爱平, 张云尚, 宋通洋, 胡一鸣, 郑万彬, 罗孟飞, 鲁继青, 黄伟新. TiO2晶面依赖的Ir-TiOx相互作用对Ir/TiO2催化剂巴豆醛选择性加氢性能的影响[J]. 催化学报, 2021, 42(10): 1742-1754. |
[14] | 闻益智, 杨韬, 程传祺, 赵雪茹, 刘恩佐, 杨静. 通过拉伸应变调节Ru@RuO2核壳纳米球中Ru(IV)的电荷密度并应用于酸性环境电解水产氧[J]. 催化学报, 2020, 41(8): 1161-1167. |
[15] | 廖文敏, 赵培培, 岑丙横, 贾爱平, 鲁继青, 罗孟飞. Co-Cr-O复合氧化物上丙烷低温完全氧化:结构效应、反应动力学和原位光谱研究[J]. 催化学报, 2020, 41(3): 442-453. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||