催化学报 ›› 2013, Vol. 34 ›› Issue (8): 1570-1575.DOI: 10.1016/S1872-2067(12)60615-9

• 研究论文 • 上一篇    下一篇

Co2C上CO的程序升温脱附和程序升温表面反应研究

裴彦鹏a,c, 丁云杰a,b, 臧娟a,c, 宋宪根a,c, 董文达a,c, 朱何俊a, 王涛a, 陈维苗a   

  1. a 中国科学院大连化学物理研究所洁净能源国家实验室, 辽宁大连116023;
    b 中国科学院大连化学物理研究所催化基础国家重点实验室, 辽宁大连116023;
    c 中国科学院大学, 北京100049
  • 收稿日期:2013-04-07 修回日期:2013-05-10 出版日期:2013-08-16 发布日期:2013-07-30
  • 通讯作者: 丁云杰

Temperature-programmed desorption and surface reaction studies of CO on Co2C

Yanpeng Peia,c, Yunjie Dinga,b, Juan Zanga,c, Xiangen Songa,c, Wenda Donga,c, Hejun Zhua, Tao Wanga, Weimiao Chena   

  1. a Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    b State Key Laboratory for Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    c University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-04-07 Revised:2013-05-10 Online:2013-08-16 Published:2013-07-30

摘要: 采用CO与金属Co在473K反应400h以上合成了Co2C样品,采用X射线衍射、透射电镜和CO程序升温还原对样品进行了表征,并采用CO程序升温脱附和CO程序升温表面反应研究了Co2C对CO的吸附及其加氢活化行为. 结果表明,Co2C微观结构由体相和表面钝化层两部分组成. 表面钝化层可被CO于477K左右去除. CO在Co2C上有2个脱附峰,其中低温脱附峰可能源于Co2C上吸附的CO,而高温脱附峰可能对应于残留于Co2C晶格内的CO. Co2C上吸附的CO可与H2反应生成醇.

关键词: 碳化钴, 钝化层, 一氧化碳吸附, 加氢,

Abstract: Cobalt carbide (Co2C) samples were prepared by carburizing Co with CO at 473 K for in excess of 400 h and were characterized by X-ray diffraction, transmission electron microscopy, CO temperature-programmed reduction, CO temperature-programmed desorption (CO-TPD), and CO temperature-programmed surface reaction. The prepared Co2C samples were composed of bulk Co2C with a surface CoO passivation layer. The passivation layer could be removed by reaction with CO at 477 K. CO desorbing at low temperature in CO-TPD experiments likely originated from chemisorbed CO. CO desorbing at high temperature was likely due to residual CO within the Co2C crystal lattice. CO adsorbed on Co2C reacted with H2 to form alcohol.

Key words: Cobalt carbide, Passivation layer, Carbon monoxide adsorption, Hydrogenation, Alcohol