催化学报 ›› 2013, Vol. 34 ›› Issue (11): 1964-1974.DOI: 10.1016/S1872-2067(12)60701-3
蔡双飞a,b, 王定胜a, 牛志强a, 李亚栋a
收稿日期:
2013-07-20
修回日期:
2013-09-02
出版日期:
2013-10-18
发布日期:
2013-10-18
通讯作者:
Yadong Li
基金资助:
国家纳米科技基础研究重大项目(2011CB932401,2011CBA00500,2012CB224802);国家自然科学基金(21221062,21131004,21322107,21171105).
Shuangfei Caia,b, Dingsheng Wanga, Zhiqiang Niua, Yadong Lia
Received:
2013-07-20
Revised:
2013-09-02
Online:
2013-10-18
Published:
2013-10-18
Contact:
Yadong Li
Supported by:
This work was supported by the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (2011CB932401, 2011CBA00500, 2012CB224802) and the National Natural Science Foundation of China (21221062, 21171105, 21322107, 21131004).
摘要:
纳米催化介于均相催化与多相催化之间, 也称为”半多相催化”, 目前正受到人们越来越多的关注. 最近几年, 应用双金属纳米材料进行催化研究取得了很大进展, 使用这些催化材料可以增加反应活性和选择性, 而且能很好地得以回收. 本文综述了双金属纳米材料催化的各种有机反应, 如选择性氧化/氢化、偶联和其它反应(脱卤、酰胺化、还原氨化、芳基硼酸与烯酮的1,4-不对称加成和氢解). 将双金属纳米材料用于催化合成更加复杂的有机分子值得期待. 在双金属纳米有机催化领域, 基础理论和实际应用尚有较大的发展空间. 未来该领域的发展需要开展多学科的合作, 包括合理设计和可控制备相关的双金属纳米材料、深入理解催化机理及发展计算催化.
蔡双飞, 王定胜, 牛志强, 李亚栋. 双金属纳米材料催化的有机反应进展[J]. 催化学报, 2013, 34(11): 1964-1974.
Shuangfei Cai, Dingsheng Wang, Zhiqiang Niu, Yadong Li. Progress in organic reactions catalyzed by bimetallic nanomaterials[J]. Chinese Journal of Catalysis, 2013, 34(11): 1964-1974.
[1] Yu W, Porosoff M D, Chen J G. Chem Rev, 2012, 112: 5780 [2] Cushing B L, Kolesnichenko V L, O'Connor C J. Chem Rev, 2004, 104: 3893 [3] Ferrando R, Jellinek J, Johnston R L. Chem Rev, 2008, 108: 845 [4] Wang D S, Li Y D. Adv Mater, 2011, 23: 1044 [5] Campbell C T. Annu Rev Phys Chem, 1990, 41: 775 [6] Gu J, Zhang Y-W, Tao F. Chem Soc Rev, 2012, 41: 8050 [7] Rodriguez J A. Surf Sci Rep, 1996, 24: 223 [8] Madey T E, Nien, C-H, Pelhos K, Kolodziej J J, Abdelrehim I M, Tao H-S. Surf Sci, 1999, 438: 191 [9] Schauermann S, Nilius N, Shaikhutdinov S, Freund H-J. Acc Chem Res, 2013, 46: 1673 [10] Zhou K B, Li Y D. Angew Chem Int Ed, 2012, 51: 602 [11] Pushkarev V V, Zhu Z, An K, Hervier A, Somorjai G A. Top Catal, 2012, 55: 1257 [12] Shi J L. Chem Rev, 2013, 113: 2139 [13] Sinfelt J H. Bimetallic Catalysts: Discoveries, Concepts, and Applications. New York: John Wiley & Sons, 1983 [14] Roucoux A, Schulz J, Patin H. Chem Rev, 2002, 102: 3757 [15] Pyykko P. Angew Chem Int Ed, 2002, 41: 3573 [16] Wu W Q, Jiang H F. Acc Chem Res, 2012, 45: 1736 [17] Piera J, Bäckvall J-E. Angew Chem Int Ed, 2008, 47: 3506 [18] Punniyamurthy T, Velusamy S, Iqbal J. Chem Rev, 2005, 105: 2329 [19] Haruta M, Kobayashi T, Sano H, Yamada N. Chem Lett, 1987: 405 [20] Zhang Y, Cui X J, Shi F, Deng Y Q. Chem Rev, 2012, 112: 2467 [21] Mikami Y, Dhakshinamoorthy A, Alvaro M, García H. Catal Sci Technol, 2013, 3: 58 [22] Matsumoto T, Ueno M, Wang N, Kobayashi S. Chem Asian J, 2008, 3: 196 [23] Malat T, Baiker A. Chem Rev, 2004, 104: 3037 [24] Della Pina C, Falletta E, Rossi M. J Catal, 2008, 260: 384 [25] Huang X M, Wang X G, Wang X S, Wang X X, Tan M W, Ding W Z, Lu X G. J Catal, 2013, 301: 217 [26] Huang X M, Wang X G, Tan M W, Zou X J, Ding W Z, Lu X G. Appl Catal A, 2013, 467: 407 [27] Li W J, Wang A Q, Liu X Y, Zhang T. Appl Catal A, 2012, 433-434: 146 [28] Sugano Y, Shiraishi Y, Tsukamoto D, Ichikawa S, Tanaka S, Hirai T. Angew Chem Int Ed, 2013, 52: 5295 [29] Chen Y T, Lim H M, Tang Q H, Gao Y T, Sun T, Yan Q Y, Yang Y H. Appl Catal A, 2010, 380: 55 [30] Balcha T, Strobl J R, Fowler C, Dash P, Scott R W J. ACS Catal, 2011, 1: 425 [31] Miyamura H, Matsubara R, Kobayashi S. Chem Commun, 2008: 2031 [32] Dimitratos N, Villa A, Wang D, Porta F, Su D S, Prati L. J Catal, 2006, 244: 113 [33] Villa A, Janjic N, Spontoni P, Wang D, Su D S, Prati L. Appl Catal A, 2009, 364: 221 [34] Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Science, 2006, 311: 362 [35] Kaizuka K, Miyamura H, Kobayashi S. J Am Chem Soc, 2010, 132: 15096 [36] Yoo W J, Miyamura H, Kobayashi S. J Am Chem Soc, 2011, 133: 3095 [37] Kesavan L, Tiruvalam R, Ab Rahim M H, bin Saiman M I, Enache D I, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Taylor S H, Knight D W, Kiely C J, Hutchings G J. Science, 2011, 331: 195 [38] bin Saiman M I, Brett G L, Tiruvalam R, Forde M M, Sharples K, Thetford A, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Murphy D M, Bethell D, Willock D J, Taylor S H, Knight D W, Kiely C J, Hutchings G J. Angew Chem Int Ed, 2012, 51: 5981 [39] Alonso F, Riente P, Yus M. Acc Chem Res, 2011, 44: 379 [40] Yan N, Zhao C, Luo C, Dyson P J, Liu H C, Kou Y. J Am Chem Soc, 2006, 128: 8714 [41] Xu K L, Zhang Y, Chen X R, Huang L, Zhang R, Huang J. Adv Synth Catal, 2011, 353: 1260 [42] Corma A, Serna P, Concepciόn P, Calvino J J. J Am Chem Soc, 2008, 130: 8748 [43] Tsang S C, Cailuo N, Oduro W, Kong A T S, Clifton L, Yu K M K, Thiebaut B, Cookson J, Bishop P. ACS Nano, 2008, 2: 2547 [44] Zheng R Y, Porosoff M D, Weiner J L, Lu S L, Zhu Y X, Chen J G. Appl Catal A, 2012, 419-420: 126 [45] Gual A, Godard C, Castillόn S, Claver C. Dalton Trans, 2010, 39: 11499 [46] Blaser H-U, Steiner H, Studer M. ChemCatChem, 2009, 1: 210 [47] Wei H-H, Yen C H, Lin H-W, Tan C-S. J Supercrit Fluid, 2013, 81: 1 [48] Wu Y E, Cai S F, Wang D S, He W, Li Y D. J Am Chem Soc, 2012, 134: 8975 [49] Wang D S, Li Y D. J Am Chem Soc, 2010, 132: 6280 [50] Duan H H, Wang D S, Kou Y, Li Y D. Chem Commun, 2013, 49: 303 [51] Lonergan W W, Vlachos D G, Chen J G. J Catal, 2010, 271: 239 [52] Studt F, Abild-Pedersen F, Bligaard T, Sørensen R Z, Christensen C H, Nørskov J K. Science, 2008, 320: 1320 [53] Vang R T, Honkala K, Dahl S, Vestergaard E K, Schnadt J, Lægsgaard E, Clausen B S, Nørskov J K, Besenbacher F. Nat Mater, 2005, 4: 160 [54] Wehrli J T, Thomas D J, Wainwright M S, Trimm D L, Cant N W. Appl Catal, 1990, 66: 199 [55] Wehrli J T, Thomas D J, Wainwright M S, Trimm D L, Cant N W. Appl Catal, 1991, 70: 253 [56] Menezes W G, Altmann L, Zielasek V, Thiel K, Bäumer M. J Catal, 2013, 300: 125 [57] Nakamula I, Yamanoi Y, Imaoka T, Yamamoto K, Nishihara H. Angew Chem Int Ed, 2011, 50: 5830 [58] Cai S F, Duan H H, Rong H P, Wang D S, Li L S, He W, Li Y D. ACS Catal, 2013, 3: 608 [59] Xia B H, He F, Li L D. Langmuir, 2013, 29: 4901 [60] Jiang H-L, Akita T, Ishida T, Haruta M, Xu Q. J Am Chem Soc, 2011, 133: 1304 [61] Cardenas-Lizana F, Gomez-Quero S, Hugon A, Delannoy L, Louis C, Keane M A. J Catal, 2009, 262: 235 [62] Corbos E C, Ellis, P R, Cookson J, Briois V, Hyde T I, Sankar G, Bishop P T. Catal Sci Technol, 2013, DOI: 10.1039/c3cy00255a [63] Liu M H, Bai Q, Xiao H L, Liu Y Y, Zhao J, Yu W W. Chem Eng J, 2013, 232: 89 [64] Xie Y L, Xiao N, Ling Z, Liu Y, Yu C, Qiu J S. Chin J Catal (解雅玲, 肖南, 凌铮, 柳月, 于畅, 邱介山. 催化学报), 2012, 33: 1883 [65] Müslehiddinoğlu J, Li J, Tummala S, Deshpande R. Org Process Res Dev, 2010, 14: 890 [66] Johansson Seechurn C C C, Kitching M O, Colacot T J, Snieckus V. Angew Chem Int Ed, 2012, 51: 5062 [67] Hyotanishi M, Isomura Y, Yamamoto H, Kawasaki H, Obora Y. Chem Commun, 2011, 47: 5750 [68] Li C C, Sato R, Kanehara M, Zeng H B, Bando Y, Teranishi T. Angew Chem Int Ed, 2009, 48: 1 [69] Zhang R Z, Liu J M, Li F W, Wang S F, Xia C G, Sun W. Chin J Chem, 2011, 29: 525 [70] Shen Y-M, Du Y-J, Zeng M-F, Zhi D, Zhao S-X, Rong L-M, Lv S-Q, Du L, Qi C-Z. Appl Organomet Chem, 2010, 24: 631 [71] Wu Y E, Wang D S, Zhao P, Niu Z Q, Peng Q, Li Y D. Inorg Chem, 2011, 50: 2046 [72] Tan L F, Wu X L, Chen D, Liu H Y, Meng X W, Tang F Q. J Mater Chem A, 2013, 1: 10382 [73] Shaabani A, Mahyari M. J Mater Chem A, 2013, 1: 9303 [74] Alonso A, Shafir A, Macanás J, Vallribera A, Muñoz M, Muraviev D N. Catal Today, 2012, 193: 200 [75] Kim S-J, Oh S-D, Lee S, Choi S-H. J Ind Eng Chem, 2008, 14: 449 [76] Xu W, Sun Y L, Guo M H, Zhang W Q, Gao Z W. Chin J Org Chem (徐伟, 孙原龙, 郭萌涵, 张伟强, 高子伟. 有机化学), 2013, 33: 820 [77] Durand J, Teuma E, Gomez M. Eur J Inorg Chem, 2008: 3577 [78] Phan N T S, Van Der Sluys M, Jones C W. Adv Synth Catal, 2006, 348: 609 [79] Widegren J A, Finke R G. J Mol Catal A, 2003, 198: 317 [80] Fang P-P, Jutand A, Tian Z-Q, Amatore C. Angew Chem Int Ed, 2011, 50: 12184 [81] Karam A, Alonso J C, Gerganova T I, Ferreira P, Bion N, Barrault J, Jerome F. Chem Commun, 2009: 7000 [82] Dhital R N, Kamonsatikul C, Somsook E, Sakurai H. Catal Sci Technol, 2013, DOI: 10.1039/c3cy00303e [83] Niu Z Q, Peng Q, Zhuang Z B, He W, Li Y D. Chem Eur J, 2012, 18: 9813 [84] Ordóñez S, Sastre H, Diez F V. React Kinet Catal Lett, 2000, 70: 61 [85] Shin E J, Keane M A. J Catal, 1998, 173: 450 [86] Feng J T, Lin Y J, Evans D G, Duan X, Li D-Q. J Catal, 2009, 266: 351 [87] Wu W H, Xu J, Ohnishi R. Appl Catal B, 2005, 60: 129 [88] Meshesha B T, Chimentao R J, Segarra A M, Llorca J, Medina F, Coq B, Sueiras J E. Appl Catal B, 2011, 105: 361 [89] Díaz E, Faba L, Ordόñez S. Appl Catal B, 2011, 104: 415 [90] Díaz E, Ordόñez S, Bueres R F, Asedegbega-Nieto E, Sastre H. Appl Catal B, 2010, 99: 181 [91] Janiak T, Okal J. Appl Catal B, 2009, 92: 384 [92] Bonarowska M, Kaszkur Z, Kępiński L, Karpiński Z. Appl Catal B, 2010, 99: 248 [93] Coq B, Ferrat G, Figueras F. J Catal, 1986, 101: 434 [94] Ordόñez S, Sastre H, Díez F V. Appl Catal B, 2003, 40: 119 [95] Amenomiya Y, Birss V I, Goledzinowski M, Galuszka J, Singer A R. Catal Rev-Sci Eng, 1990, 32: 163 [96] Diaz E, Mohedano A F, Casas J A, Calvo L, Gilarranz M A, Rodriguez J J. Appl Catal B, 2011, 106: 469 [97] Bertolini J C, Jugnet Y. In: Woodruff D P Ed. Surfaces Alloy and Alloys Surface. Amsterdam: Elsevier, 2002. 404 [98] Wang X Y, Chen C, Chang Y, Liu H L. J Hazard Mater, 2009, 161: 815 [99] Shih Y H, Chen Y C, Chen M Y, Tai Y T, Tso C P. Colloids Surf A, 2009, 332: 84 [100] Zahran E M, Bhattacharyya D, Bachas L G. Chemosphere, 2013, 91: 165 [101] Babu N S, Lingaiah N, Sai Prasad P S. Appl Catal B, 2012, 111-112: 309 [102] Yang B, Deng S B, Yu G, Zhang H, Wu J H, Zhuo Q F. J Hazard Mater, 2011, 189: 76 [103] Rong H P, Cai S F, Niu Z Q, Li Y D. ACS Catal, 2013, 3: 1560 [104] Nie X Q, Liu J G, Yue D B, Zeng X W, Nie Y F. Chemosphere, 2013, 90: 2403 [105] Parshetti G K, Doong R A. Chemosphere, 2012, 86: 392 [106] Keane M A, Gόmez-Quero S, Cárdenas-Lizana F, Shen W Q. ChemCatChem, 2009, 1: 270 [107] Legawiec-Jarzyna M, Juszczyk W, Bonarowska M, Kaszkur Z, Kępiński L, Kowalczyk Z, Karpiński Z. Top Catal, 2009, 52: 1037 [108] Soulé J-F, Miyamura H, Kobayashi S. J Am Chem Soc, 2011, 133: 18550 [109] Hu L, Cao X Q, Ge D H, Hong H Y, Guo Z Q, Chen L, Sun X H, Tang J X, Zheng J W, Lu J M, Gu H W. Chem Eur J, 2011, 17: 14283 [110] Sreedhar B, Reddy P S, Devi D K. J Org Chem, 2009, 74: 8806 [111] Li L S, Niu Z Q, Cai S F, Zhi Y, Li H, Rong H P, Liu L C, Liu L, He W, Li Y D. Chem Commun, 2013, 49: 6843 [112] Yasukawa T, Miyamura H, Kobayashi S. J Am Chem Soc, 2012, 134: 16963 [113] Ma L, He D H. Top Catal, 2009, 52: 834 [114] Li B D, Wang J, Yuan Y Z, Ariga H, Takakusagi S, Asakura K. ACS Catal, 2011, 1: 1521 [115] Astruc D. Nanoparticles and Catalysis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 2 [116] Patil N T. ChemCatChem, 2011, 3: 1121 [117] Myers V S, Weir M G, Carino E V, Yancey D F, Pande S, Crooks R M. Chem Sci, 2011, 2: 1632 [118] Cong H, Porco J A Jr. ACS Catal, 2012, 2: 65 [119] Liu X W, Wang D S, Li Y D. Nano Today, 2012, 7: 448 [120] Tao F. Chem Soc Rev, 2012, 41: 7977 [121] Tao F, Zhang S, Nguyen L, Zhang X Q. Chem Soc Rev, 2012, 41: 7980 |
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 孙嘉辰, 陈赛, 付东龙, 王伟, 王显辉, 孙国栋, 裴春雷, 赵志坚, 巩金龙. 氧扩散与表面反应在VOx-Ce1‒xZrxO2催化丙烷脱氢反应中的影响[J]. 催化学报, 2023, 52(9): 217-227. |
[5] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[6] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[7] | Abhishek R. Varma, Bhushan S. Shrirame, Sunil K. Maity, Deepti Agrawal, Naglis Malys, Leonardo Rios-Solis, Gopalakrishnan Kumar, Vinod Kumar. C4二醇的发酵生产及其化学催化升级为高价值化学品的研究进展[J]. 催化学报, 2023, 52(9): 99-126. |
[8] | 刘鑫, 王茂弟, 任亦起, 刘嘉立, 戴慧聪, 杨启华. 构建模块化催化体系用于氢转移反应: 氢键的促进作用[J]. 催化学报, 2023, 52(9): 207-216. |
[9] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[10] | 李晓娟, 祁明雨, 李婧宇, 谭昌龙, 唐紫蓉, 徐艺军. PdS修饰的ZnIn2S4复合材料用于可见光催化硫醇偶联制备二硫化物同时产氢[J]. 催化学报, 2023, 51(8): 55-65. |
[11] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[12] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[13] | 尹春, 杨甫林, 王书莉, 冯立纲. 异质结构NiSe2/MoSe2用于高效尿素辅助电解水制氢[J]. 催化学报, 2023, 51(8): 225-236. |
[14] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[15] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||