催化学报 ›› 2013, Vol. 34 ›› Issue (11): 1975-1985.DOI: 10.1016/S1872-2067(12)60708-6

• 综述 • 上一篇    下一篇

“嵌入模型”在γ-Al2O3负载单组分和双组分金属氧化物催化剂中的应用

姚小江a, 高飞b, 董林a,b   

  1. a 南京大学化学化工学院, 介观化学教育部重点实验室, 江苏南京210093;
    b 南京大学现代分析中心, 江苏省机动车尾气污染控制重点实验室, 江苏南京210093
  • 收稿日期:2013-08-31 修回日期:2013-09-10 出版日期:2013-10-18 发布日期:2013-10-18
  • 通讯作者: Lin Dong
  • 基金资助:

    国家自然科学基金(20873060,20973091);国家重点基础研究发展计划(973计划, 2010CB732300);江苏省科技支撑计划工业项目(SBE201100389).

The application of incorporation model in γ-Al2O3-supported single and dual metal oxide catalysts:A review

Xiaojiang Yaoa, Fei Gaob, Lin Donga,b   

  1. a School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210093, Jiangsu, China;
    b Center of Modern Analysis, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210093, Jiangsu, China
  • Received:2013-08-31 Revised:2013-09-10 Online:2013-10-18 Published:2013-10-18
  • Contact: Lin Dong
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (20873060, 20973091), the National Basic Research Program of China (973 Program, 2010CB732300), and Jiangsu Science and Technology Support Program (SBE201100389).

摘要:

探讨负载型金属氧化物催化剂的表面组分与载体之间的相互作用, 有助于理解相关催化剂的催化作用本质. 近年来, 我们对单组分CuO以及双组分CuO-Mn2O3, CuO-CoO等金属氧化物在γ-Al2O3载体表面的分散行为和存在状态, 及其物理化学性质和催化性能(CO+O2和NO+CO模型反应)进行了研究. 结果表明, 这些金属氧化物在γ-Al2O3载体表面的分散行为和所得负载型催化剂样品的一些物理化学性质及其催化性能均可参照“嵌入模型”来解释. 在此基础上, 我们讨论了这些样品的“组成-结构-性质”间的关系, 并针对表面负载双组分金属氧化物样品提出了表面协同氧空位参与的NO+CO反应机理.

关键词: γ-氧化铝载体, 负载型金属氧化物催化剂, 表面相互作用, 嵌入模型, 表面协同氧空位

Abstract:

The investigation of the interaction between the surface dispersed components and the supports is the key to understand the nature of catalytic reactions. A single metal oxide (CuO) and dual metal oxides (CuO-Mn2O3, CuO-CoO, etc.) were supported on γ-Al2O3 to produce model catalysts. The dispersion behavior of these metal oxides on the surface of γ-Al2O3 and some physicochemical properties were explained using the Incorporation Model. These properties were considered together with their catalytic performances in CO+O2 and NO+CO model reactions to explore "composition-structure-property" relationships. A possible reaction mechanism involving surface synergetic oxygen vacancy on the supported dual metal oxide catalysts was proposed to approach the nature of NO reduction by CO.

Key words: γ-Alumina support, Supported metal oxide catalyst, Surface interaction, Incorporation Model, Surface synergetic oxygen vacancy