催化学报 ›› 2014, Vol. 35 ›› Issue (3): 286-293.DOI: 10.1016/S1872-2067(14)60015-2

• 研究论文 • 上一篇    下一篇

Ni-Mo氮化物催化剂:合成及其丙烷氨氧化催化性能

范晓强a, 张惠民b, 李建梅a, 赵震a, 徐春明a, 刘坚a, 段爱军a, 姜桂元a, 韦岳长a   

  1. a 中国石油大学(北京)重质油国家重点实验室, 北京102249;
    b 神华集团有限责任公司煤制油化工部, 北京100011
  • 收稿日期:2013-11-03 修回日期:2013-12-27 出版日期:2014-02-26 发布日期:2014-02-26
  • 通讯作者: 赵震,刘坚
  • 基金资助:

    国家自然科学基金(21073235,21173270,21177160);国家高技术研究发展计划(863计划,2013AA065302F);中国石油大学基金(LLYJ-2011-39 and KYJJ2012-06-31).

Ni-Mo nitride catalysts:Synthesis and application in the ammoxidation of propane

Xiaoqiang Fana, Huimin Zhangb, Jianmei Lia, Zhen Zhaoa, Chunming Xua, Jian Liua, Aijun Duana, Guiyuan Jianga, Yuechang Weia   

  1. a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China;
    b Department of CTL and Chemicals, Shenhua Group Corporation Ltd, Beijing 100011, China
  • Received:2013-11-03 Revised:2013-12-27 Online:2014-02-26 Published:2014-02-26
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21073235, 21173270, 21177160), the National High Technology Research and Development Program of China (863 Program, 2013AA065302F), and China University of Petroleum Fund (LLYJ-2011-39 and KYJJ2012-06-31).

摘要:

分别采用溶胶-凝胶法、旋转蒸发微波干燥法、共沉淀法、浸渍法和机械混合法制备Ni-Mo氧化物前驱体. 以H2和N2的混合气为氮化气体,采用程序升温氮化法合成了镍钼氮化物催化剂. 利用X射线衍射、总氮含量分析、X射线光电子能谱及H2程序升温还原对Ni-Mo氧化物前体及氮化物催化剂进行了表征. 将上述Ni-Mo氮化物催化剂用于丙烷氨氧化反应中. 结果表明,Ni-Mo氧化物前驱体的制备方法影响其氮化物催化剂上丙烷氨氧化反应性能. Ni-Mo氮化物催化剂中氮物种的移动性及反应性对产物丙烯腈选择性的影响较大,共沉淀法制备的催化剂存在大量的活性氮物种,因而具有良好的催化丙烷氨氧化反应活性.

关键词: 镍钼氮化物, 丙烷氨氧化, 丙烯腈, 制备方法, 氮物种

Abstract:

Five different methods were used to prepare the Ni-Mo oxide precursors including sol-gel, rotary evaporation-microwave drying, co-precipitation, impregnation, and mechanical mixing. Ni-Mo nitride catalysts have been synthesized by temperature-programmed nitration of the oxide precursors in a flow of H2 and N2. The structure and physico-chemical properties of the Ni-Mo oxide precursors and their corresponding nitride catalysts were determined by X-ray diffraction, total nitrogen content analysis, X-ray photoelectron spectroscopy and H2 temperature-programmed reduction, and their catalytic performance for propane ammoxidation was also tested. The catalytic activity and selectivity towards the formation of acrylonitrile over the Ni-Mo nitride catalysts are strongly dependent on the preparation methods for the oxide precursors. The N species in the Ni-Mo nitrides and their mobility and reactivity affect the selectivity for acrylonitrile. The Ni-Mo nitride prepared by co-precipitation, with the largest amount and more reactive N species, exhibited the highest catalytic activity and selectivity for acrylonitrile.

Key words: Nickle-molybdenum nitride, Propane ammoxidation, Acrylonitrile, Preparation method, Nitrogen species