催化学报 ›› 2014, Vol. 35 ›› Issue (5): 733-740.DOI: 10.1016/S1872-2067(14)60077-2

• 研究论文 • 上一篇    下一篇

Ru/ZSM-5催化葡萄糖选择性加氢制备山梨醇

郭星翠a, 王喜成a, 关静a, 陈秀芳a, 秦张峰b, 牟新东a, 咸漠a   

  1. a 中国科学院青岛生物能源与过程研究所, 中国科学院生物基材料重点实验室, 山东青岛266101;
    b 中国科学院山西煤炭化学研究所, 煤转化国家重点实验室, 山西太原030001
  • 收稿日期:2014-01-20 修回日期:2014-03-13 出版日期:2014-04-18 发布日期:2014-04-24
  • 通讯作者: 牟新东
  • 基金资助:

    国家自然科学基金(21273260,21303238,21201174);山东省自然科学杰出青年基金(JQ201305);煤转化国家重点实验室开放基金(J13-14-603).

Selective hydrogenation of D-glucose to D-sorbitol over Ru/ZSM-5 catalysts

Xingcui Guoa, Xicheng Wanga, Jing Guana, Xiufang Chena, Zhangfeng Qinb, Xindong Mua, Mo Xiana   

  1. a Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China;
    b State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
  • Received:2014-01-20 Revised:2014-03-13 Online:2014-04-18 Published:2014-04-24
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21273260, 21303238, and 21201174), the Shandong Provincial Natural Science Foundation for Distinguished Young Scholar, China (JQ201305), and the Foundation of State Key Laboratory of Coal Conversion (J13-14-603).

摘要:

采用无有机模板剂一步法制备了Ru/ZSM-5催化剂,利用X射线衍射、N2吸附-脱附、NH3-程序升温脱附和CO2-程序升温脱附、扫描电镜和透射电镜等方法对催化剂进行了表征. 考察了反应温度、钌负载量和催化剂重复利用等因素对Ru/ZSM-5上葡萄糖加氢反应性能的影响,并与浸渍法制备的Ru/ZSM-5催化剂进行了对比. 结果表明,与传统浸渍法相比,一步法制备的Ru/ZSM-5催化剂钌粒子具有更高的分散性和稳定性. 在120 ℃和4 MPa的温和反应条件下,葡萄糖接近完全转化,山梨醇选择性高达99.2%,催化剂可重复利用5次,仍保持较高活性.

关键词: 加氢, 葡萄糖, 山梨醇, 钌, ZSM-5

Abstract:

Ru particles were introduced into the zeolite ZSM-5 (MFI) by either a conventional impregnation method or a one-step template-free process. The resultant materials were characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, NH3 and CO2 temperature-programmed desorption. The results indicated that the Ru species in ZSM-5 catalysts prepared via the latter approach (designated as Ru/ZSM-5-TF) were highly dispersed in the ZSM-5 framework structure and this material exhibited high catalytic performance during the hydrogenation of D-glucose to D-sorbitol. The conversion of D-glucose was as high as 99.6% with D-sorbitol selectivity reaching 99.2%, exceeding the performance of Ru/ZSM-5 catalysts prepared by the conventional impregnation method with microporous or desilicated ZSM-5 supports. More importantly, this catalyst showed high stability against leaching and poisoning and could be reused several times. The extensive dispersion of the Ru species, strong interaction between the Ru species and the ZSM-5, and the suitable surface acidity-basicity balance of the Ru/ZSM-5-TF were all critical factors leading to excellent catalytic behavior and stability.

Key words: Hydrogenation, D-glucose, D-sorbitol, Ruthenium, ZSM-5