催化学报 ›› 2015, Vol. 36 ›› Issue (4): 490-495.DOI: 10.1016/S1872-2067(14)60211-4

• 燃料电池电催化专栏 • 上一篇    下一篇

应用于氧还原反应的石墨烯-无定形碳核壳结构复合材料载铂催化剂

吴惠, 彭焘, 寇宗魁, 张建, 程坤, 何大平, 潘牧, 木士春   

  1. 武汉理工大学材料复合新技术国家重点实验室, 湖北武汉 430070
  • 收稿日期:2014-07-12 修回日期:2014-08-22 出版日期:2015-03-23 发布日期:2015-03-23
  • 通讯作者: Shichun Mu
  • 基金资助:

    国家自然科学基金(51372186); 国家重点基础研究发展计划(973计划, 2012CB215504); 湖北省自然基金重点项目(2013CFA082)

Core-shell graphene@amorphous carbon composites supported platinum catalysts for oxygen reduction reaction

Hui Wu, Tao Peng, Zongkui Kou, Jian Zhang, Kun Cheng, Daping He, Mu Pan, Shichun Mu   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China
  • Received:2014-07-12 Revised:2014-08-22 Online:2015-03-23 Published:2015-03-23
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51372186), the National Basic Research Program of China (973 Program, 2012CB215504), and the Natural Science Foundation of Hubei Province of China (2013CFA082).

摘要:

采用氯化法制备石墨烯-无定型碳复合材料(GNS@a-C), 并用作质子交换膜燃料电池(PEMFC)氧还原反应Pt催化剂的载体. 结果显示, 所制Pt/GNS@a-C催化剂与传统商业催化剂Pt/C相比, 有较好的活性和较高的稳定性: 质量活性(0.121 A/mg)几乎是Pt/C (0.064 A/mg)的两倍. 更重要的是, 该新型催化剂加速4000圈后其电化学活性面积保留了最初的51%,与Pt/C的33%相比, 前者有更好的电化学稳定性, 显示它在PEMFC中将具有较好的应用潜力.

关键词: 低温燃料电池, 载体, 核壳结构, 氧还原反应

Abstract:

A core-shell graphene nanosheets (GNS) and amorphous carbon composite (GNS@a-C) was prepared by a chlorination method and used as a highly efficient catalyst support for oxygen reduction reaction. Herein, GNS as a shell, with excellent conductivity, high surface area, and corrosion resistance, served as a protecting coating to alleviate the degradation of amorphous carbon core. Platinum nanoparticles were homogeneously deposited on the carbon support (Pt/GNS@a-C) and showed a good catalytic activity and a higher electrochemical stability when compared with a commercial Pt/C catalyst. The mass activity of Pt/GNS@a-C catalyst was 0.121 A/mg, which was almost twice as high as that of Pt/C (0.064 A/mg). Moreover, Pt/GNS@a-C retained 51% of its initial electrochemical specific area after 4000 operating cycles when compared with Pt/C (33%). Thus, the prepared catalyst featured excellent electrochemical stability, showing promise for application in polymer electrolyte membrane fuel cells.

Key words: Low-temperature fuel cell, Support, Core-shell structure, Oxygen reduction reaction