催化学报 ›› 2015, Vol. 36 ›› Issue (9): 1461-1475.DOI: 10.1016/S1872-2067(15)60861-0

• 综述 • 上一篇    下一篇

利用多功能、多用途的可再生甲酸实现化学品的绿色与可持续合成

柳翔, 李舒爽, 刘永梅, 曹勇   

  1. 复旦大学化学系, 上海市分子催化和功能材料重点实验室, 上海200433
  • 收稿日期:2015-03-02 修回日期:2015-04-04 出版日期:2015-08-28 发布日期:2015-09-26
  • 通讯作者: 曹勇, 电话: (021)55665287; 传真: (021)65643774; 电子信箱: yongcao@fudan.edu.cn
  • 基金资助:

    国家自然科学基金(21273044, 21473035); 博士点基金(20120071110011); 上海市科学技术委员会资助项目(08DZ2270500, 12ZR1401500).

Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis

Xiang Liu, Shushuang Li, Yongmei Liu, Yong Cao   

  1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received:2015-03-02 Revised:2015-04-04 Online:2015-08-28 Published:2015-09-26
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21273044, 21473035), the Research Fund for the Doctoral Program of Higher Education (20120071110011) and Science & Technology Commission of Shanghai Municipality (08DZ2270500, 12ZR1401500).

摘要:

近年来, 随着化石资源日趋短缺以及由此带来的人类生存环境日益恶化, 生物质等可再生资源的高效、可持续利用已成为各国科学家研究与关注的焦点. 甲酸, 生物精炼中的主要副产物之一, 具备廉价易得、无毒、能量密度高以及可再生可降解等特性, 将其应用于新能源利用与化学转化, 不仅有助于甲酸应用领域的进一步拓展, 还有助于解决面向未来的生物精炼技术中的一些共性瓶颈问题. 本文简要回顾了甲酸利用的研究历史, 总结了甲酸作为高效、多用途试剂与原料在化学品合成及生物质催化转化等方面的最新研究进展, 并对利用甲酸活化来实现高效化学转化的基本原理及催化体系进行了对比分析, 指出今后研究重点应着眼于努力提高甲酸的利用效率, 同时实现高选择性合成两方面, 并在此基础上进一步拓展其应用领域.
在化学品合成方面, 甲酸作为一种环境友好可再生的多功能试剂可应用于多种官能团的选择转化过程. 作为一种高含氢量的氢转移试剂或还原剂, 甲酸相较传统氢气具有操作简便可控、条件温和、具有良好化学选择性等优点, 广泛应用于醛酮、硝基、亚胺、腈、炔烃、烯烃等的选择还原以制取相应的醇、胺、烯烃和烷烃类化合物, 以及醇类和环氧化物的氢解和官能团去保护等过程. 鉴于甲酸亦可用作C1原料, 作为多用途的关键基础试剂甲酸还可应用于包括喹啉衍生物的还原甲酰化、胺类化合物甲酰化和甲基化, 烯烃羰化以及炔烃还原水合等多级串联反应, 是实现精细复杂有机分子高效简约绿色合成的重要途径. 该类过程的挑战在于寻求对甲酸及特定官能团的可控活化兼具高选择性和高活性的多功能催化剂. 此外, 近期有研究表明以甲酸为C1原料还可通过催化歧化反应直接高选择性合成甲醇等大宗化学品.
在生物质催化转化方面, 甲酸的多功能特性为实现绿色、安全、高原子经济性生物精炼过程提供了潜在可能. 生物质资源是储量最大、最具潜力的可持续替代资源, 但将其转化为可利用的资源形式仍然面临挑战. 甲酸的酸性质及良好溶剂特性可应用于生物质原料预处理过程, 实现木质纤维素组分分离和纤维素提取, 相较传统无机酸预处理体系具有沸点低、易分离、不引入无机离子、对下游反应兼容性强等优点; 而作为高效氢源, 甲酸也被广泛研究应用于生物质平台化合物选择催化转化制高附加值化学品、木质素降解制芳烃化合物和生物油加氢脱氧精制处理等过程, 相较依赖H2的传统氢化过程具有转化效率高、反应条件温和, 简便安全并可有效减少相关生物精炼过程中化石资源的物耗与能耗等优势. 最新研究表明, 通过在温和条件下甲酸水溶液中解聚氧化木质素, 可得到重量比大于60%的低分子量芳烃溶液, 这一创新性发现为从木质素中直接提取高值芳香化学物等化学品带来了新的机遇.
综上所述, 生物基甲酸在绿色有机合成和生物质转化等方面表现出巨大潜力, 而其多功能性和多用途性对于实现原料的高效利用及目标产物的高选择性至关重要. 该领域目前已取得了一定成果并得到了快速发展, 然而距实际产业应用还有相当距离, 需要进一步探索. 今后的研究重点应着眼于以下几个方面: (1)如何针对特定反应优选合适的催化活性金属及反应体系; (2)如何在其他原料和试剂存在条件下高效、可控地活化甲酸; (3)如何从分子层面理解复杂反应的反应机制; (4)如何在相关过程中稳定相应催化剂. 展望未来, 基于现代社会对环境、经济和可持续发展的需求, 甲酸化学将得到产业界与学术界越来越多的关注和研究.

关键词: 甲酸, 新型催化, 可再生氢能源, 环境友好型试剂, 化学合成, 生物精炼

Abstract:

Formic acid is available as a major byproduct from biorefinery processing and this together with its unique properties, including non-toxicity, favorable energy density, and biodegradability, make it an economically appealing and safe reagent for energy storage and chemical synthesis. This review provides an overview of novel recent achievements in green catalytic transformations that use biogenic formic acid as an efficient and versatile reagent. The examples selected demonstrate the advantages of formic acid in addressing the key issues (minimizing the use and generation of hazardous substances while maximizing productivity under mild and benign reaction conditions) in clean chemical transformation. Special emphasis is put on the prospects of formic acid for delivering new catalytic technology to produce a plethora of tailor-made products via the flexible and selective conversion of renewable biomass resources. The potential of formic acid as a renewable C1feedstock for both bulk and fine chemical syntheses is also outlined with examples. The role of multifunctionality in catalyst design as a key aspect in developing new catalytic concepts capable of promoting new transformations to give unprecedented selectivity and efficiency is also discussed. This article is expected to advance research on sustainable, green and affordable bio-based processes as alternatives to traditional ones with the goal to develop a fully sustainable chemical industry based on renewable resources.

Key words: Formic acid, Innovative catalysis, Renewable hydrogen source, Benign feedstock, Chemical synthesis, Biomass valorization