催化学报 ›› 2015, Vol. 36 ›› Issue (9): 1440-1460.DOI: 10.1016/S1872-2067(15)60923-8

• 综述 • 上一篇    下一篇

木质纤维素中C-O键选择性活化和高效转化制化学品

邓卫平a, 张宏喜b, 薛来奇b, 张庆红a, 王野a   

  1. a 厦门大学化学化工学院, 能源材料化学协同创新中心, 固体表面物理化学国家重点实验室, 醇醚酯化工清洁生产国家工程实验室, 福建厦门361005;
    b 昌吉学院化学与应用化学系, 新疆昌吉831100
  • 收稿日期:2015-04-27 修回日期:2015-06-09 出版日期:2015-08-28 发布日期:2015-09-26
  • 通讯作者: 王野, 电话: (0592)2186156; 传真: (0592)2183047; 电子信箱: wangye@xmu.edu.cn
  • 基金资助:

    国家自然科学基金(21173172, 21473141); 高等学校博士学科点基金优先发展领域(201301211300001); 教育部创新团队发展计划(IRT_14R31).

Selective activation of the C-O bonds in lignocellulosic biomass for the efficient production of chemicals

Weiping Denga, Hongxi Zhangb, Laiqi Xueb, Qinghong Zhanga, Ye Wanga   

  1. a State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China;
    b Department of Chemistry and Applied Chemistry, Changji University, Changji 831100, Xinjiang, China
  • Received:2015-04-27 Revised:2015-06-09 Online:2015-08-28 Published:2015-09-26
  • Supported by:

    This work was supported by National Natural Science Foundation of China (21173172, 21473141), the Research Fund for the Doctorial Program of Higher Education (20130121130001), and the Program for Innovative Research Team in University (IRT_14R31).

摘要:

高效转化来源丰富且可再生的木质纤维素制备化学品和燃料对建立可持续发展社会具有重要意义. 木质纤维素利用的一条理想途径是将其主要成分纤维素、半纤维素和木质素在温和条件下高选择性地催化转化为关键平台化学品. 本文综述了近年报道的有关纤维素、半纤维素和木质素或其模型分子中C-O键选择性活化生成葡萄糖、葡萄糖衍生物(包括葡萄糖苷、六元醇和葡萄糖酸)、木糖、阿拉伯糖和芳香化合物的新催化剂和新策略, 阐述了决定催化性能的关键因素. 本文还讨论了相关反应机理以深入理解C-O键选择性活化.
纤维素由葡萄糖单元通过β-1,4-糖苷键连接而成, 通过水解反应, 选择性切断这些糖苷键可以获得葡萄糖或其低聚物. 鉴于葡萄糖在水热条件下不稳定, 发展纤维素温和条件下水解的酸催化剂至关重要. 众多研究表明, 均相酸催化剂(如无机酸, 杂多酸等)具有强Brönsted酸, 在该水解反应中显示高的催化活性. 另一方面, 拥有强酸性基团-SO3H的固体酸也表现出优异的水解糖苷键性能, 但是-SO3H官能团易于流失, 限制了这类固体酸催化剂的循环使用. 最近研究显示, 一些催化剂尤其是碳材料上引入能够与纤维素形成氢键的官能团时, 其催化纤维素水解性能显著增强. 设计合成这类具备酸性位和氢键位协同效应的稳定固体酸催化剂是纤维素水解转化的一个颇具前景的研究方向.
以醇替代水为溶剂实施纤维素醇解制葡萄糖苷是高效活化糖苷键的有效策略. 杂多酸被证实为该醇解反应的高性能催化剂. 在相同反应条件下, 醇解产物葡萄糖苷较水解产物葡萄糖更为稳定, 因此可以获得高的葡萄糖苷收率. 开发稳定可重复利用的固体酸催化剂是纤维素醇解的关键. 耦合水解与加氢或氧化反应可以直接将纤维素转化为相对稳定且具有广泛用途的多元醇或有机酸. 目前已有一系列双功能催化剂被报道, 这些催化剂通常组合了具备水解功能的液体酸或固体酸和具备加氢或氧化功能的贵金属或过渡金属(譬如Ru, Pt, Ni和Au). 其中杂多酸盐或含有磺酸官能团的固体酸负载Ru或Au双功能催化剂显示出优异的生成六元醇或葡萄糖酸的催化性能.
半纤维素由葡萄糖、甘露糖、木糖、阿拉伯糖、半乳糖等单糖单元通过糖苷键连接而成, 糖苷键选择性活化可生成各种单糖混合物. 硫酸可以有效水解半纤维素, 但是同时也易于催化所生成的单糖深度转化为呋喃及其衍生物. 较之硫酸, 酸性较弱的有机酸特别是二元羧酸(例如马来酸、草酸等)具有较高的单糖选择性. 固体酸如酸性树脂, 分子筛等亦可催化半纤维素水解反应, 但树脂类催化剂中官能团的流失问题有待解决.
木质素是由含甲氧基等取代基的苯丙烷单元通过一系列化学键连接而成的复杂大分子, 其芳香单元间包括β-O-4, α-O-4和4-O-5等三种主要连接方式, 选择性切断这些C-O键可获得高附加值的芳香化合物. 水解和氢解是两类普遍用以活化木质素及其模型化合物C-O键的反应. 酸和碱均可催化木质素及其模型化合物水解, 但是通常需要苛刻条件获取高转化率. 近期研究显示, 通过对木质素Cα-OH预氧化, 再以HCOOH/HCOONa实施水解反应, 可以成功实现温和条件下有机溶剂提取木质素及其模型化合物的高效转化. 另一方面, 均相金属络合物(如Ni, Fe和Ru)或多相负载型金属催化剂(如Ni, Cu, Mo, Pt, Ru, Pd或Ru等)均可有效催化木质素及其模型化合物中C-O键氢解, 获得芳烃化合物. 在部分多相催化剂体系中, 除C-O键活化断裂外, 还伴随芳环深度加氢反应, 产生较多环己烷衍生物. 因此, 设计合成具备氢解功能同时抑制过度加氢功能的催化剂是获得芳烃化合物的关键.

关键词: 生物质, 纤维素, 半纤维素, 木质素, 碳-氧键活化

Abstract:

The efficient transformation of abundant and renewable lignocellulosic biomass for the production of chemicals and fuels is of considerable importance for establishing a sustainable society. The selective catalytic conversion of the major components of lignocellulosic biomass, including cellulose, hemicellulose and lignin, into key platform chemicals under mild conditions represents an ideal route for the utilization of this abundant resource. Cellulose is composed of multiple glucose units, which are linked together through β-1,4-glycosidic bonds, and the selective cleavage of these glycosidic bonds would therefore provide access to glucose and glucose derivatives. Hemicellulose is a heteropolysaccharide composed of different sugar units such as glucose, mannose, xylose, arabinose and galactose. The selective cleavage of the glycosidic bonds in hemicelluloses would therefore provide a mixture of different sugars. In contrast to cellulose and hemicellulose, lignin is a complex macropolymer consisting of methoxylated phenylpropane structures. Furthermore, lignin contains a variety of different C-O bond types, including β-O-4, α-O-4 and 4-O-5 bonds, which connect the primary aromatic units in lignin. The selective cleavage of these C-O bonds would therefore lead to the formation of high-value aromatic compounds. In this review article, we have provided a detailed summary of recent advances towards the development of new catalysts and novel strategies for the selective cleavage of the C-O bonds in cellulose, hemicellulose and lignin, as well as closely related model systems, for the production of glucose, glucose derivatives (including alkyl glucosides, hexitols and gluconic acid), xylose, arabinose and aromatic compounds. The key factors determining catalytic performances have been described in detail. The reaction mechanisms have also been discussed to provide the reader with a deeper understanding of the processes involved in the selective activation of C-O bonds.

Key words: Biomass, Cellulose, Hemicellulose, Lignin, Carbon-oxygen bond activation