催化学报 ›› 2015, Vol. 36 ›› Issue (10): 1694-1700.DOI: 10.1016/S1872-2067(15)60933-0

• 论文 • 上一篇    下一篇

双功能催化剂Ru/(AC-SO3H)催化转化菊芋根茎制备六元醇

周立坤a,b, 李振雷a,b, 庞纪峰a, 郑明远a, 王爱琴a, 张涛a   

  1. a 中国科学院大连化学物理研究所, 辽宁大连116023;
    b 中国科学院大学, 北京100049
  • 收稿日期:2015-04-17 修回日期:2015-06-03 出版日期:2015-09-26 发布日期:2015-09-26
  • 通讯作者: 张 涛. 电话: (0411)84379015; 传真: (0411)84691570; 电子信箱: taozhang@dicp.ac.cn;王爱琴. 电话: (0411)84379348; 传真: (0411)84685940; 电子信箱: aqwang@dicp.ac.cn
  • 基金资助:

    国家自然科学基金(21176235, 21306191, 21376239).

Catalytic conversion of Jerusalem artichoke tuber into hexitols using the bifunctional catalyst Ru/(AC-SO3H)

Likun Zhoua,b, Zhenlei Lia,b, Jifeng Panga, Mingyuan Zhenga, Aiqin Wanga, Tao Zhanga   

  1. a Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    b University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-04-17 Revised:2015-06-03 Online:2015-09-26 Published:2015-09-26
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21176235, 21306191 and 21376239).

摘要:

甘露醇和山梨醇等六元醇是重要的多元醇, 广泛用于食品、医药和化工等领域, 尤其山梨醇被美国能源部定为一种重要的平台化合物. 工业上, 六元醇通常由果糖、葡萄糖和蔗糖加氢得到, 此路线存在与人争粮争地的问题. 菊芋是一种来源广泛、价格低廉的生物质资源, 它富含果糖基多糖(菊糖), 菊糖的含量占菊芋根茎干重的70%-90%, 由生物质菊芋出发催化转化制备六元醇具有重要意义.
由菊芋根茎催化转化制备六元醇是一个串联反应过程, 菊芋根茎先经过水解得到糖类, 然后经过加氢反应得到六元醇. 我们用磺化活性炭AC-SO3H代替AC载体以促进菊芋根茎水解反应. AC经磺化后, 比表面积由原来的768增至1020 m2/g, 酸强度由原来的0.21增至0.68 mmol/g, 表明磺化过程不仅除去了AC中的杂质, 也在其表面固定了大量的-SO3H, -COOH, -OH等酸性基团. 透射电镜结果表明, 1%Ru/AC和1%Ru/(AC-SO3H)催化剂上Ru高度分散. CO化学吸附表明, 上述两种催化剂Ru的分散度分别为30.9%和74.2%, 表明AC经磺化后产生了更多的固定位点, 使得Ru可以更好地分散在载体上.
在温和条件下(100 oC, 6 MPa H2, 5 h)将菊芋根茎转化为六元醇, 1%Ru/AC催化剂上六元醇收率为52.7%, 而1%Ru/(AC-SO3H)催化剂上可达84.1%. 这归因于后者的酸强度和Ru分散度较大: 其表面的酸性基团-SO3H, -COOH, -OH促进了菊芋根茎的水解, 高分散度的Ru则促进了糖加氢反应的进行. 将Ru的负载量提高至3%, 六元醇产率高达92.6%.
以1%Ru/AC和1%Ru/(AC-SO3H)为催化剂, 分别以果糖和菊粉为原料制备六元醇. 结果表明, 以果糖为原料时两种催化剂性能相同; 以菊粉为原料时, 1%Ru/AC的催化性能远低于1%Ru/(AC-SO3H). 这表明菊粉和菊芋根茎转化反应, 速控步骤是水解反应, 而磺化过程引入的酸性基团可以促进水解过程的进行.
在N2气氛下反应, 主要产物为果糖和葡萄糖, 表明菊芋根茎水解反应是主要的反应路径. 在H2气氛下反应, 糖类产率在1 h内达到最大值, 然后开始逐渐降低, 同时加氢产物逐渐增加. 因此, H2气氛下反应过程中生成的糖类是中间产物.
以菊芋根茎为原料, 1%Ru/(AC-SO3H)催化剂循环使用4次后六元醇产率由87%降至55%; 而以菊粉为原料, 循环4次后六元醇产率略有降低. ICP测试表明, Ru催化剂并未流失, 3次循环后催化剂的CO化学吸附表明, Ru的分散度由74.2%降至17.8%. 这表明催化剂失活是由菊芋根茎中的杂质毒化Ru活性位点导致的.

关键词: 菊芋根茎, 六元醇, 双功能催化剂, 水解, 加氢, 钌, 磺化

Abstract:

Jerusalem artichoke tuber (JAT) was employed as a feedstock for production of hexitols under mild conditions over a sulfonated activated carbon supported Ru catalyst (Ru/(AC-SO3H)). In comparison with conventional Ru/AC catalyst, the sulfonation process of the carbon support was observed to create abundant surface acid groups, which in turn function as the anchoring sites for Ru nanoparticles, thus increasing the dispersion of Ru. Consequently, the bifunctional Ru/(AC-SO3H) catalyst displayed significantly enhanced activity in one-pot production of hexitols from JAT; the hexitols yield achieved 92.6% over the 3%Ru/(AC-SO3H) catalyst when the reaction was conducted at 373 K and 6 MPa H2 for 3 h. The stability of the catalyst was also investigated, which showed a decreasing trend in the yield of sorbitol with the run number due to poisoning of Ru surface by the impurity in the JAT feedstock. In contrast, when pure inulin was used as the feedstock, the catalyst presented excellent stability in the successive four runs.

Key words: Jerusalem artichoke tuber, Hexitols, Bifunctional catalysts, Hydrolysis, Hydrogenation, Ruthenium, Sulfonation