催化学报 ›› 2015, Vol. 36 ›› Issue (9): 1409-1418.DOI: 10.1016/S1872-2067(15)60932-9

• 视角 • 上一篇    下一篇

晶相调控对金属纳米粒子催化性能的影响

刘爽, 李勇, 申文杰   

  1. 中国科学院大连化学物理研究所, 催化基础国家重点实验室, 辽宁大连116023
  • 收稿日期:2015-05-06 修回日期:2015-06-12 出版日期:2015-08-28 发布日期:2015-09-26
  • 通讯作者: 申文杰, 电话: (0411)84379085; 传真: (0411)84694447; 电子信箱: shen98@dicp.ac.cn; 刘爽, 电话: (0411)82463019; 传真: (0411)84694447; 电子信箱: yongli@dicp.ac.cn
  • 基金资助:

    国家自然科学基金(21025312, 21003118, 21373205); 国家重点基础研究发展计划(973计划, 2013CB933100).

Tuning the catalytic behavior of metal nanoparticles: The issue of the crystal phase

Shuang Liu, Yong Li, Wenjie Shen   

  1. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2015-05-06 Revised:2015-06-12 Online:2015-08-28 Published:2015-09-26

摘要:

尺寸在1-10 nm的金属纳米催化剂广泛地应用于石油化工, 精细化学品合成, 能源与环境保护等领域. 大量研究表明, 金属纳米粒子的催化性能与其微观结构, 即尺寸、形貌和晶相等密切相关. 近年来, 对金属纳米粒子的尺寸和形貌效应已经有了较为系统深入的研究, 但对晶相效应的研究则较少涉及. 这主要是由于介稳晶相的金属纳米粒子在合成过程中或反应条件下极易转化为热力学稳定的晶相结构. 根据金属原子密堆积形式, 金属纳米粒子的晶相结构主要有立方面心(fcc)、立方体心(bcc)和六方密堆积(hcp)三种晶相; 而金属合金由于d带电子存在着多种杂化方式, 因而其晶相结构呈现出多样性且与单一金属有很大的不同. 金属和合金纳米粒子晶相结构的调控, 不仅会改变金属原子的配位环境, 调控了其电子分布状态, 还可影响反应物和产物的吸附、活化和脱附, 进而调变催化性能.
首先, 我们简要总结了液相合成和固相转变调控金属纳米粒子晶相的原理和方法. 纳米粒子的液相合成一般包括前驱体还原成核和晶核生长两个阶段, 通过对液相合成条件的优化, 尤其是表面活性剂的选择, 可有效调控合成过程中的热力学和动力学因素, 从而实现金属晶相的可控合成. 固相转变则主要是对具有一定晶相结构的纳米粒子于一定气氛和温度条件下进行加热处理, 利用金属粒子与活性气体之间(H2, CO等)的化学作用来实现晶相转变. 利用上述方法, 可以合成出fcc-Co、fcc-Ru、L10-AuCu等热力学介稳的金属或合金纳米粒子.
在此基础之上, 我们分别以Co纳米粒子(fcchcp晶相)催化FT合成, Fe模型催化剂(fccbcc晶相)活化N2和CO, Ru纳米粒子(fcchcp晶相)催化CO氧化和氨硼烷水解制氢, Pd纳米粒子(PdHx物种)催化加氢等为例分析了晶相对金属纳米粒子催化性能的影响; 在合金催化剂方面, 以Pt3Co(无序的fcc和有序的L12), AuPdCo(P3-mFm3-mR3-m混合晶相)和FePt纳米粒子(fccfct相)催化O2电化学还原、PtRhSn (碲铂矿晶相和fcc晶相)和ZrPt3纳米粒子(hcpfcc晶相)催化乙醇电氧化、Ag3In合金(无序的Fm3-m相和有序的Pm3-m晶相)催化对硝基苯酚加氢、PdRu纳米粒子(fcchcp混合晶相)催化CO氧化等为例分析了合金催化剂的晶相对催化性能的影响. 上述研究进展表明, 金属纳米粒子的晶相也是影响制备剂高效金属催化剂的主要因素.
最后, 我们结合纳米催化的发展现状, 提出了金属纳米粒子的晶相调控在纳米催化和纳米材料领域可能的发展态势. 第一, 通过对金属纳米粒子溶液相合成机理的深入研究, 有助于发展出尺寸、形貌和晶相同时可控的新合成方法. 第二, 金属纳米粒子在晶相转化过程中往往伴随着烧结及组分的偏析等难题. 利用氧化物包覆的核壳型或蛋壳型纳米结构以及碳纳米管的空间限域效应, 或许有助于解决上述难题. 第三, 具有亚稳晶相结构的金属纳米粒子在反应条件下极易转变为热力学稳定的结构, 因此, 利用原位、动态、实时的表征技术对催化剂在真实工作状态下的微观结构进行细致的分析是阐明晶相效应的前提.

关键词: 金属纳米粒子, 纳米合金, 晶相结构, 纳米催化剂, 构效关系