催化学报 ›› 2015, Vol. 36 ›› Issue (11): 2020-2029.DOI: 10.1016/S1872-2067(15)60898-1

• 论文 • 上一篇    下一篇

中孔氧化硅负载铬催化剂上苯高选择性生成苯酚:响应曲面分析法用于反应条件优化

Milad Jourshabania, Alireza Badieia,b, Negar Lashgaria, Ghodsi Mohammadi Ziaranic   

  1. a 德黑兰大学理学院化学学院, 德黑兰, 伊朗;
    b 德黑兰大学纳米科学和纳米技术研究中心, 纳米生物医药杰出研究中心, 德黑兰, 伊朗;
    c Alzahra大学理学院化学系, 德黑兰, 伊朗
  • 收稿日期:2015-04-23 修回日期:2015-05-18 出版日期:2015-11-02 发布日期:2015-11-02
  • 通讯作者: Alireza Badiei. 电话: +98-216-1112614; 传真: +98-216-6405141; 电子信箱: abadiei@khayam.ut.ac.ir

Highly selective production of phenol from benzene over mesoporous silica-supported chromium catalyst: Role of response surface methodology in optimization of operating variables

Milad Jourshabania, Alireza Badieia,b, Negar Lashgaria, Ghodsi Mohammadi Ziaranic   

  1. a School of Chemistry, College of Science, University of Tehran, Tehran, Iran;
    b Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran;
    c Department of Chemistry, Faculty of Science, Alzahra University, Tehran, Iran
  • Received:2015-04-23 Revised:2015-05-18 Online:2015-11-02 Published:2015-11-02

摘要:

以硝酸铬为前驱体, 中孔氧化硅SBA-16为载体, 采用简单浸渍法制备了Cr/SBA-16催化剂, 并采用广角和小角X射线衍射、N2吸附-脱附、透射电镜和紫外-可见光谱等技术对其进行了表征. 同时将该催化剂用于以H2O2为氧化剂的苯直接羟基化制苯酚反应以考察其催化性能. 将中心组合设计与响应曲面分析法(RSM)相结合, 对影响反应性能的操作变量如反应温度、反应时间及H2O2和催化剂用量进行了优化. 结果表明, 独立变量和苯酚产率之间的关系可用二阶多项式模型来表达, 其相关系数(R2)高达0.985, 表明用RSM预测的数值与实验值吻合较好. 得到的苯酚选择性较高时的操作条件为: 反应温度324 K, 反应时间8 h, H2O2和催化剂用量分别为3.28 mL和0.09 g. 由此可见, 将RSM法用于苯羟基化制苯酚反应条件优化是可靠的.

关键词: 中孔氧化硅, 铬/SBA-16催化剂, 苯羟基化, 苯酚, 响应曲面分析法

Abstract:

A Cr/SBA-16 catalyst was prepared using Cr(NO3)3 as a precursor and mesoporous silica SBA-16 as a support via a simple impregnation method. The catalyst was characterized using wide-angle X-ray diffraction (XRD), low-angle XRD, N2 adsorption-desorption, transmission electron microscopy, and ultraviolet-visible spectroscopy. The catalyst activity was investigated in the direct hydroxylation of benzene to phenol using H2O2 as the oxidant. Various operating variables, namely reaction temperature, reaction time, amount of H2O2, and catalyst dosage, were optimized using central composite design combined with response surface methodology (RSM). The results showed that the correlation between the independent parameters and phenol yield was represented by a second-order polynomial model. The high correlation coefficient (R2), i.e., 0.985, showed that the data predicted using RSM were in good agreement with the experimental results. The optimization results also showed that high selectivity for phenol was achieved at the optimized values of the operating variables: reaction temperature 324 K, reaction time 8 h, H2O2 content 3.28 mL, and catalyst dosage 0.09 g. This study showed that RSM was a reliable method for optimizing process variables for benzene hydroxylation to phenol.

Key words: Mesoporous silica, Chromium/SBA-16 catalyst, Benzene hydroxylation, Phenol, Response surface methodology