催化学报 ›› 2015, Vol. 36 ›› Issue (12): 2145-2154.DOI: 10.1016/S1872-2067(15)60986-X

• 论文 • 上一篇    下一篇

pH调控合成溴氧铋纳米片的底物依赖光催化特性

艾智慧, 王吉玲, 张礼知   

  1. 华中师范大学化学学院环境化学研究所, 湖北武汉 430079
  • 收稿日期:2015-08-24 修回日期:2015-09-19 出版日期:2015-12-02 发布日期:2015-12-07
  • 通讯作者: 张礼知
  • 基金资助:

    国家自然科学杰出青年基金(21425728); 国家自然科学基金(21173093, 21177048, 21273088, 21477044); 湖北省自然科学基金重点项目(2013CFA114); 中央高校基本科研业务费专项资金(CCNU14Z01001, CCNU12KFY002).

Substrate-dependent photoreactivities of BiOBr nanoplates prepared at different pH values

Zhihui Ai, Jilin Wang, Lizhi Zhang   

  1. Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, Hubei, China
  • Received:2015-08-24 Revised:2015-09-19 Online:2015-12-02 Published:2015-12-07
  • Supported by:

    This work was supported by the National Natural Science Funds for Distinguished Young Scholars (21425728), the National Natural Science Foundation of China (21173093, 21177048, 21273088, 21477044), the Key Project of Natural Science Foundation of Hubei Province (2013CFA114), and the the Fundamental Research Funds for the Central Universities (CCNU14Z01001 CCNU14KFY002).

摘要:

近年来,半导体光催化技术已广泛用于去除水中有机污染物.在各类光催化剂中,具有合适禁带宽度的溴氧铋(BiOBr, 2.7eV)材料吸引了众多研究者兴趣.通常情况下,半导体光催化降解有机污染物性能主要与光催化材料的结构性质,如物相组成、颗粒粒径、材料表面结构等相关.研究已经证实了TiO2光催化降解有机污染物具有底物依赖的特性,但是BiOBr的有机物降解特性与底物性质的关系研究尚未见文献报道.为发展高效的BiOBr太阳光催化污染净化技术,研究有机底物与BiOBr光催化降解性能的关系具有重要意义.
本文分别在pH = 1和pH = 3条件下采用水热法合成了BiOBr纳米片(BOB-1和BOB-3),并通过X射线粉末衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),紫外-可见漫反射(DRS)等技术表征了所制备半导体光催化材料.结果表明,在不同pH条件下均能合成具有高结晶度的四方相BiOBr,BOB-1和BOB-3均由不规则的纳米片组成,BOB-3纳米片宽度大约为0.6-1.5μm,厚度大约27-44nm,而BOB-1纳米片宽度大约为0.7-2.0μm,厚度大约50nm.选区电子衍射观察到了BOB-1和BOB-3清晰的晶格条纹,晶格间距为0.20和0.28nm,分别对应着四方晶系的(020)面和(110)面.
选取罗丹明B(RhB)和水杨酸(SA)为典型有机底物分子,研究了BOB-1和BOB-3纳米片的底物依赖光催化特性.结果表明, BOB-1吸附SA和RhB 1 h后,吸附率分别仅为0.2%和0.8%,而BOB-3对SA和RhB的效率分别可达9.1%和12.7%;光催化降解两种底物分子的结果表明,BOB-1和BOB-3降解RhB的速率分别为4.00以及16.10g·min-1·m2,而降解SA的速率分别为和2.35g·min-1·m2.可见,BOB-1显示了高效降解SA的能力,而,BOB-3则表现出更强的降解RhB活性.电化学Mott-Schottky和电动电位测试结果表明,BOB-1比BOB-3有更正的价带电位和更低的表面电荷.捕获实验(KI捕获空穴,K2Cr2O7捕获电子,氩气捕获超氧负离子,异丙醇捕获羟基自由基)表明光生空穴与超氧负离子是BOB-3降解RhB的主要活性物种,而BOB-1降解SA主要是光生空穴作用,电子顺磁共振(ESR)测试进一步证实了以上结果.光电流密度测试结果表明,可见光作用下RhB可被激发到RhB*,导致BOB-3的电子空穴对分离效率高;而当电解质中存在SA时,催化剂的表面羟基与SA形成氢键,致使光生电子与空穴分离效果变差,因而光电流减少.
本文提出了pH调控合成溴氧铋纳米片的底物依赖光催化降解RhB和SA机理,与BiOBr导带电位、底物分子吸附量、底物分子物理化学性质相关.BOB-1和BOB-3纳米片催化剂在可见光激发下能产生光生导带电子和价带空穴,这些光生载流子可迁移到催化剂表面.染料分子RhB在可见光作用下能发生光敏化作用生成激发态RhB*,RhB*可以将电子注入BOB-3催化剂的导带,导带上的光生电子与RhB*注入电子与吸附在其表面的氧气共同作用生成更多的超氧负离子,从而高效降解RhB.由于BOB-1比BOB-3有更正导带电势,导带电子无法直接还原氧气生成超氧负离子,仅能依靠光生空穴直接氧化RhB,导致BOB-1表现出降解RhB性能弱;对于无色的底物SA,吸附较多SA的BOB-3催化剂上的表面羟基与SA之间形成氢键作用,抑制了光生电子与空穴对的分离,导致BOB-3在可见光光催化降解SA活性弱,而BOB-1表面吸附SA较少,同时BOB-1有更负的价带电位,利用光生空穴与吸附在催化剂表面的SA反应,从而表现出高效降解SA的性能.

关键词: 降解, 可见光, 底物依赖光催化活性, 溴氧铋纳米片, 罗丹明B, 水杨酸

Abstract:

In this study, we showed that BiOBr nanoplates prepared at different pH values have substrate-dependent photocatalytic activities under visible-light irradiation. The BiOBr nanoplates synthesized at pH 1 (BOB-1) degraded salicylic acid more effectively than did those obtained at pH 3 (BOB-3), but the order of their photocatalytic activities in rhodamine B (RhB) degradation were reversed. Electrochemical Mott-Schottky and zetα-potential measurements showed that BOB-1 had a more positive valence band and lower surface charge, leading to superior photocatalytic activity in salicylic acid degradation under visible light. However, BOB-3 was more powerful in RhB degradation because larger numbers of superoxide radicals were generated via electron injection from the excited RhB to its more negative conduction band under visible-light irradiation; this was confirmed using active oxygen species measurements and electron spin resonance analysis. This study deepens our understanding of the origins of organic-pollutant-dependent photoreactivities of semiconductors, and will help in designing highly active photocatalysts for environmental remediation.

Key words: Degradation, Visible light, Substrate dependent photoreactivity, Bismuth oxybromide nanoplate, Rhodamine B, Salicylic acid