催化学报 ›› 2016, Vol. 37 ›› Issue (8): 1314-1323.DOI: 10.1016/S1872-2067(15)61115-9

• 论文 • 上一篇    下一篇

Fe-Mn/Al2O3催化剂低温NH3选择性催化还原NO的性能

王晓波a,b, 伍士国a,b, 邹伟欣a,b, 虞硕涵a,b, 归柯庭c, 董林a,b   

  1. a. 南京大学化学化工学院, 介观化学教育部重点实验室, 江苏 南京 210093;
    b. 南京大学现代分析中心, 江苏省机动车尾气污染控制重点实验室, 江苏 南京 210093;
    c. 东南大学能源与环境学院, 能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096
  • 收稿日期:2016-03-03 修回日期:2016-04-18 出版日期:2016-07-29 发布日期:2016-08-01
  • 通讯作者: Xiaobo Wang, Lin Dong
  • 基金资助:

    国家高技术研究发展计划(863计划,2015AA03A401);国家自然科学基金(51276039);中央高校基本科研业务费专项资金(020514380020,020514380030);江苏省博士后基金(1501033A).

Fe-Mn/Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3

Xiaobo Wanga,b, Shiguo Wua,b, Weixin Zoua,b, Shuohan Yua,b, Keting Guic, Lin Donga,b   

  1. a. Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China;
    b. Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, Jiangsu, China;
    c. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2016-03-03 Revised:2016-04-18 Online:2016-07-29 Published:2016-08-01
  • Contact: Xiaobo Wang, Lin Dong
  • Supported by:

    This work was supported by the National High Technology Research and Development Program of China (863 Program, 2015AA03A401), the National Natural Science Foundation of China (51276039), the Fundamental Research Funds for the Central Universities (020514380020, 020514380030), and the Postdoctoral Science Foundation of Jiangsu Province, China (1501033A).

摘要:

本文制备了一系列Fe-Mn/Al2O3催化剂,并在固定床上考察了其NH3低温选择性催化还原NO的性能.首先考察了不同Fe负载量制备的催化剂的脱硝性能,优选出最佳的Fe负载量;在此基础上,研究了Mn负载量对催化剂脱硝效率的影响;最后,对优选催化剂的抗H2O和抗SO2性能进行了实验研究;同时,对催化剂由于SO2所造成的失活机制进行了考察.采用N2吸附-脱附、X射线衍射、透射电镜、能量弥散X射线谱、程序升温还原、程序升温脱附、X射线光电子能谱、热重和傅里叶变换红外光谱等方法对催化剂进行了表征.结果表明,最佳的Fe和Mn负载量均为8%,所制的8Fe-8Mn/Al2O3催化剂在150℃的脱硝效率可达近99%;同时,在整个低温测试区间(90-210℃)的脱硝效率均超过了92.6%.Fe在催化剂表面主要以Fe3+形态存在,而Mn主要包括Mn4+和Mn3+;Mn的添加提高了Fe在催化剂表面的积累,促进了催化剂比表面积增大和活性物种分散,改善了催化剂氧化还原性能和对NH3的吸附能力.催化剂的高活性主要是由于其具有较大的比表面积、高度分散的活性物种、增加的还原特性和表面酸性、较低的结合能、较高的Mn4+/Mn3+和增强的表面吸附氧.此外,8Fe-8Mn/Al2O3的催化性能受H2O和SO2影响较小,抗H2O和SO2能力较强.同时,反应温度对催化剂的抗硫性有重要影响,在较低的反应温度下,催化剂抗硫性更好;SO2造成催化剂活性降低主要是由于催化剂表面硫酸盐物种的生成.一方面,表面硫酸铵盐的生成造成催化剂孔道堵塞和比表面积降低,减少了反应中的气固接触从而导致活性降低;另一方面,催化剂表面的活性物种被硫酸化,造成反应中的有效活性位减少,从而降低了催化剂活性.

关键词: 一氧化氮, 低温选择性催化还原, 铁-锰催化剂, X射线光电子能谱, 二氧化硫, 傅里叶变换红外光谱

Abstract:

A series of Fe-Mn/Al2O3 catalysts were prepared and studied for low temperature selective catalytic reduction (SCR) of NO with NH3 in a fixed-bed reactor. The effects of Fe and Mn on NO conversion and the deactivation of the catalysts were studied. N2 adsorption-desorption, X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy, H2 temperature-programmed reduction, NH3 temperature-programmed desorption, X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis and Fourier transform infrared spectroscopy were used to characterize the catalysts. The 8Fe-8Mn/Al2O3 catalyst gave 99% of NO conversion at 150 ℃ and more than 92.6% NO conversion was obtained in a wide low temperature range of 90-210 ℃. XPS analysis demonstrated that the Fe3+ was the main iron valence state on the catalyst surface and the addition of Mn increased the accumulation of Fe on the surface. The higher specific surface area, enhanced dispersion of amorphous Fe and Mn, improved reduction properties and surface acidity, lower binding energy, higher Mn4+/Mn3+ ratio and more adsorbed oxygen species resulted in higher NO conversion for the 8Fe-8Mn/Al2O3 catalyst. In addition, the SCR activity of the 8Fe-8Mn/Al2O3 catalyst was only slightly decreased in the presence of H2O and SO2, which indicated that the catalyst had better tolerance to H2O and SO2. The reaction temperature was crucial for the SO2 resistance of catalyst and the decrease of catalytic activity caused by SO2 was mainly due to the sulfate salts formed on the catalyst.

Key words: Nitrogen monoxide, Low-temperature selective catalytic reduction, Fe-Mn catalyst, X-ray photoelectron spectroscopy, Sulfur dioxide, Fourier transform infrared spectroscopy