催化学报 ›› 2016, Vol. 37 ›› Issue (8): 1413-1422.DOI: 10.1016/S1872-2067(16)62466-X

• 论文 • 上一篇    下一篇

调变MTO反应中双循环机理的比重:ZSM-5分子筛上不同接触时间的作用

张默之a,c, 徐舒涛a, 魏迎旭a, 李金哲a, 王金棒a, 张雯娜a,c, 高树树a,c, 刘中民a,b   

  1. a. 中国科学院大连化学物理研究所洁净能源国家实验室(筹), 甲醇制烯烃国家工程实验室, 能源材料化学协同创新中心, 辽宁 大连 116023;
    b. 中国科学院大连化学物理研究所催化基础国家重点实验室, 辽宁 大连 116023;
    c. 中国科学院大学, 北京 100049
  • 收稿日期:2016-05-04 修回日期:2016-05-17 出版日期:2016-07-29 发布日期:2016-08-01
  • 通讯作者: Zhongmin Liu, Yingxu Wei
  • 基金资助:

    国家自然科学基金(91545104,21576256,21473182,21273230,21273005);中国科学院青年创新促进会.

Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times

Mozhi Zhanga,c, Shutao Xua, Yingxu Weia, Jinzhe Lia, Jinbang Wanga, Wenna Zhanga,c, Shushu Gaoa,c, Zhongmin Liua,b   

  1. a. National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    b. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    c. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-05-04 Revised:2016-05-17 Online:2016-07-29 Published:2016-08-01
  • Contact: Zhongmin Liu, Yingxu Wei
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (91545104, 21576256, 21473182, 21273230, 21273005) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

摘要:

低碳烯烃(乙烯、丙烯和丁烯)是重要的有机化工原料,是现代石油化工的基础,主要通过石脑油裂解和烷烃脱氢制备.现阶段我国原油对外依存度已超过60%,“多煤、缺油、少气”的能源现状决定了以煤或天然气为原料经甲醇制取石化产品成为一种重要的替代途径.甲醇制取低碳烯烃(MTO)过程成为连接煤化工和石油化工的桥梁.ZSM-5分子筛以其高效的甲醇转化能力、优异的低碳烯烃选择性和出色的抗积碳性能成为非常理想的MTO反应催化剂.研究发现ZSM-5分子筛催化MTO反应过程中,乙烯的生成规律与其它C3-C7链状烯烃不一致,认为乙烯主要来源于芳烃缩环/扩环循环,而C3-C7链状烯烃主要来源于烯烃甲基化/裂解循环,两种循环同时存在.本文于300℃在ZSM-5分子筛上进行MTO反应,通过考察不同空速(WHSV)条件下的MTO反应性能和分析催化剂内留存物种的生成和所起的作用,研究甲醇转化机理.气相流出物种和催化剂内留存物种的分析表明,ZSM-5分子筛催化MTO反应时遵循双循环机理——以多甲基苯和多甲基环戊二烯为主要活性物种的芳烃循环机理和以链状烯烃为主要活性物种的烯烃循环机理.在双循环机理中,芳烃循环和烯烃循环并不是简单叠加,而是相互影响,芳烃循环产生的烯烃可以作为烯烃循环的活性物种促进烯烃循环,烯烃循环中较高级的烯烃经过环化、氢转移作用,能够转化成富氢的烷烃和贫氢的芳烃、环戊二烯物种,贫氢的芳烃和环戊二烯物种又可以作为芳烃循环的主要物种促进芳烃循环的进行.氢转移反应是联系烯烃循环和芳烃循环的重要过程,与反应过程中原料甲醇与催化剂床层的接触时间有关,12C/13C甲醇切换实验揭示了双循环机理与氢转移反应的相关性,通过调变原料甲醇与催化剂床层的接触时间,可以调变氢转移反应的剧烈程度,进而对催化剂上芳烃循环和烯烃循环的甲醇转化能力产生不同的影响.当空速较低时,进料甲醇与催化剂床层的接触时间较长,有利于产物烯烃的氢转移反应,加速了分子筛催化剂上芳烃物种和环戊二烯物种的生成和累积,促进了芳烃循环,主要由芳烃循环生成的乙烯和多甲基苯的气相选择性提高;反之,当空速较高时,进料甲醇与催化剂床层的接触时间减少,产物烯烃的氢转移反应受到抑制,氢转移反应的产物——芳烃和环戊二烯物种的生成数量和累积速率降低,芳烃循环活性不高,使得烯烃循环成为甲醇转化的主要途径,C3-C7烯烃显示出更高的活性,在气相流出物种中的选择性也更高.总之,原料甲醇与催化剂床层的接触时间能够显著影响催化剂内留存物种的生成和累积,进而改变两种循环的比重.这些发现对于实现ZSM-5分子筛催化MTO反应过程中的产物烯烃和芳烃的选择性调控具有重要意义.

关键词: 甲醇制烯烃, 双循环机理, ZSM-5, 接触时间, 氢转移反应

Abstract:

The methanol to olefins (MTO) reaction was performed over ZSM-5 zeolite at 300 ℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic performance was assessed, in addition to the formation and function of organic compounds retained in the zeolite. Analysis of reaction effluents and confined organics demonstrated a dual-cycle reaction mechanism when employing ZSM-5. The extent of the hydrogen transfer reaction, a secondary reaction in the MTO process, varied as the catalyst-methanol contact time was changed. In addition, 12C/13C-methanol switch experiments indicated a relationship between the dual-cycle mechanism and the extent of the hydrogen transfer reaction. Reactions employing a low methanol WHSV in conjunction with a long contact time favored the hydrogen transfer reaction to give alkene products and promoted the generation and accumulation of retained organic species, such as aromatics and methylcyclopentadienes, which enhance the aromatic cycle. When using higher WHSV values, the reduced contact times lessened the extent of the hydrogen transfer reaction and limited the generation of methylcyclopentadienes and aromatic species. This suppressed the aromatic cycle, such that the alkene cycle became the dominant route during the MTO reaction.

Key words: Methanol to olefins, Dual-cycle mechanism, ZSM-5, Contact time, Hydrogen transfer reaction