催化学报 ›› 2016, Vol. 37 ›› Issue (11): 1841-1850.DOI: 10.1016/S1872-2067(16)62515-9

• 论文 • 上一篇    下一篇

Ag2S/Ag2WO4微米棒的声化学合成、表征及其高光催化性能

何洪波a, 薛霜霜a, 吴榛a, 余长林a, 杨凯a, 彭桂明a, 周晚琴a, 李德豪b   

  1. a 江西理工大学冶金与化学工程学院, 江西赣州 341000;
    b 广东石油化工学院环境与生物工程系, 广东茂名 525000
  • 收稿日期:2016-05-27 修回日期:2016-07-22 出版日期:2016-11-25 发布日期:2016-11-25
  • 通讯作者: Changlin Yu,Tel/Fax:+86-797-8312334; E-mail:yuchanglinjx@163.com;Dehao Li, E-mail:dehlee@163.com
  • 基金资助:

    国家自然科学基金(21567008,21263005);广东省扬帆计划;江西省自然科学基金(20133BAB21003,20161BAB203090);江西省高等学校科技落地计划(KJLD14046);江西省研究生创新专项资金(YC2015-S293).

Sonochemical fabrication, characterization and enhanced photocatalytic performance of Ag2S/Ag2WO4 composite microrods

Hongbo Hea, Shuangshuang Xuea, Zhen Wua, Changlin Yua, Kai Yanga, Guiming Penga, Wanqin Zhoua, Dehao Lib   

  1. a School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China;
    b Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
  • Received:2016-05-27 Revised:2016-07-22 Online:2016-11-25 Published:2016-11-25
  • Contact: Changlin Yu,Tel/Fax:+86-797-8312334; E-mail:yuchanglinjx@163.com;Dehao Li, E-mail:dehlee@163.com
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21567008, 21263005), the Yangfan Project of Guangdong Province, the Natural Science Foundation of Jiangxi Province (20133BAB21003, 20161BAB203090), the Landing Project of Science and Technology of Colleges and Universities in Jiangxi Province (KJLD14046), and the Graduate Innovation Project of Jiangxi Province (YC2015-S293).

摘要:

TiO2作为一种光催化剂广泛应用于各种污染物的降解.但是它较大的宽禁带(~3.2 eV)导致其很难吸收可见光,因此寻找窄禁带的具有可见光响应的半导体光催化剂成为近年来光催化研究的热点.在众多窄禁带光催化剂中,纯Ag2S在降解污染物方面并不出色,但是作为一种窄禁带的直接带隙半导体,它在加快电子迁移和提高光量子效率方面表现出色.目前有许多高催化活性的Ag2S异质结复合半导体光催化剂的报道,如Ag2Mo3O10-Ag2S,TiO2-Ag2S,ZnS-Ag2S和NiO-Ag2S等.Ag2WO4是一种具有新颖物理化学性质的半导体材料,在催化、传感器、抗菌和光致发光等方面有着广泛应用.但是,Ag2WO4的理论带隙较宽,约为3.5 eV,而且光照下Ag2WO4很容易产生光化学腐蚀而分解出单质银,作为光催化剂存在太阳光利用率低和稳定性较差等缺点.
声化学是一种特殊纳米材料的合成方法.它主要是利用超声空化产生特殊的物理化学环境来强化化学键的生成,同时实现半导体从无定形态到固定晶型转变.本文采用超声辅助共沉淀法制备了长为0.2-1 μm、直径为20-30 nm的Ag2S/Ag2WO4微米棒复合光催化剂.利用X射线衍射(XRD)、N2物理吸附、扫描电镜、透射电镜、光电子能谱、光致发光谱(PL)和紫外-可见漫反射吸收光谱(UV-vis DRS)和光电流等手段对所制Ag2S,Ag2WO4和Ag2S/Ag2WO4进行了表征.结果表明,合成的样品比表面积较小(2.7-3.6 m2/g).UV-vis DRS测试表明,声化学处理能有效拓宽Ag2S/Ag2WO4在可见光区的吸收范围,提高其可见光响应性能.另外,PL和光电流测试结果证实,在声化学制备的Ag2S/Ag2WO4体系中,光生电子(e-)-空穴(h+)的复合过程被极大地限制,具有较高的e--h+分离效率.
以金卤灯为光源进行了光催化降解染料亚甲基蓝的性能测试.结果表明,声化学合成的Ag2S/Ag2WO4的反应速率常数(0.150 min-1)分别为单纯Ag2WO4(0.031 min-1)和Ag2S(0.004 min-1)的4.7和29.8倍.自由基捕获实验表明,在Ag2S/Ag2WO4光催化降解甲基橙过程中主要的活性物种为超氧自由基(·O2-)和光生空穴(h+).此外,声化学合成的Ag2S/Ag2WO4表现出很好的光催化稳定性.循环使用3次后,该样品对亚甲基蓝的光催化活性仍高达80.4%,而纯Ag2WO4几乎完全失活.Ag2S/Ag2WO4具有很高的光催化活性的原因,一方面是声化学处理提高了催化剂的结晶度,同时生成了独特的棒状结构;另一方面是在超声作用下,Ag2S和Ag2WO4两相紧密接触形成异质结,促进了可见光的吸收和光生e-与h+的分离.

关键词: 声化学, 微米棒, 钨酸银, 光催化, 异质结

Abstract:

Ag2S/Ag2WO4 composite microrods, with lengths of 0.2-1 μm and diameters of 20-30 nm, were fabricated by a facile sonochemical route. The as-synthesized products were intensively investigat-ed by a series of physicochemical characterizations, such as N2 physical adsorption, X-ray diffrac-tion, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, diffuser reflectance spectroscopy, X-ray photoelectron spectroscopy, photolumines-cence spectroscopy and photocurrent response measurements. Ultrasonic irradiation yields an obvious improvement in the photocatalyst texture, for example, an increase in crystallinity and surface area. Moreover, sonochemically fabricated Ag2S/Ag2WO4 microrods display strong visible light absorption and a high transient photocurrent response. The produced intimate Ag2S/Ag2WO4 interface between Ag2S and Ag2WO4 crystal phases largely promotes the separation of photogener-ated holes and electrons. High photocatalytic activity and stability were obtained over Ag2S/Ag2WO4 composite microrods. The dye degradation rate constant of Ag2S/Ag2WO4 was 4.7 times and 29.8 times higher than that of bare Ag2WO4 and Ag2S, respectively.

Key words: Sonochemistry, Microrod, Silver tungstate, Photocatalysis, Heterojunction