催化学报 ›› 2017, Vol. 38 ›› Issue (2): 337-347.DOI: 10.1016/S1872-2067(16)62570-6

• 论文 • 上一篇    下一篇

Z型Ag3PO4/Ag2MoO4异质结光催化剂构建和光催化降解有机污染物

唐华a, 付彦惠a, 苌树方a, 谢思雨a, 唐国刚a,b   

  1. a 江苏大学材料科学与工程学院, 江苏镇江 212003;
    b 镇江高等专科学校化学与材料工程学院, 江苏镇江 212003
  • 收稿日期:2016-08-28 修回日期:2016-09-30 出版日期:2017-02-18 发布日期:2017-03-14
  • 通讯作者: Hua Tang,Tel/Fax:+86-511-88790268;E-mail:tanghua@mail.ujs.edu.cn
  • 基金资助:

    国家自然科学基金(51672113,51302112);武汉理工大学复合新技术国家重点实验室开放基金(2016-KF-10).

Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants

Hua Tanga, Yanhui Fua, Shufang Changa, Siyu Xiea, Guogang Tanga,b   

  1. a School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China;
    b School of Chemistry and Materials Engineering, Zhenjiang College, Zhenjiang 212003, Jiangsu, China
  • Received:2016-08-28 Revised:2016-09-30 Online:2017-02-18 Published:2017-03-14
  • Contact: 10.1016/S1872-2067(16)62570-6
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51672113, 51302112) and the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology, 2016-KF-10).

摘要:

作为一种绿色技术,半导体光催化氧化广泛应用于环境污染物治理和太阳能转化领域.高效、稳定、可回收利用催化剂的开发是光催化技术发展的一个重要方向.Ag系半导体光催化剂因在可见光分解水制氢及降解有机污染物等方面表现出优异的催化性能而广受关注.然而,该催化剂失活快,制约了其应用.因此,提高Ag系半导体材料的光催化稳定性成为近年研究热点.在各种Ag基光催化剂中,Ag3PO4光催化剂因其在可见光下光氧化水产生O2以及有机染料的光催化分解中有着高的量子效率,引起了人们广泛关注.如何进一步提升Ag3PO4光催化剂性能及在光催化过程中的稳定性成为研究焦点,包括Ag3PO4光催化剂的特殊形貌和晶体结构控制生长以及复合材料控制制备.但是Z型Ag3PO4基可见光催化剂的构筑仍然是一个挑战.
本文利用Ag2MoO4和Ag3PO4的溶液相反应法合成了Z型Ag3PO4/Ag2MoO4复合光催化剂,通过Ag3PO4/Ag2MoO4异质结光催化剂在可见光下降解罗丹明B(RhB)、亚甲基橙(MO)、亚甲基蓝(MB)和苯酚研究了其光催化性能,采用X射线衍射(XRD)、能谱、傅立叶变换红外光谱(FT-IR)、拉曼光谱、场发射扫描电子显微镜(FE-SEM)以及紫外可见漫反射光谱(UV-vis)等手段表征了该催化剂.
XRD,FTIR和拉曼光谱结果表明,复合材料由Ag3PO4,Ag2MoO4和单质银组成,表面成功合成了Z构型Ag3PO4/Ag/Ag2MoO4复合材料.SEM结果发现纯Ag3PO4是规则的球状,纯Ag2MoO4则是多面体状块的颗粒,在Ag3PO4/Ag2MoO4复合材料中可以看到规则的球状体Ag3PO4和Ag2MoO4纳米颗粒,并且随着Ag2MoO4含量的增加,Ag3PO4颗粒的尺寸逐渐减小.UV-vis结果发现Ag2MoO4的加入拓展了复合材料对可见光的吸收范围.光催化性能测试结果表明,8% Ag2MoO4/Ag3PO4在可见光下具有优异的光催化性能:可见光照射5 min,RhB,MO和MB的降解效率分别可达95%,97%和90%.复合材料样品经过4个循环实验后,其降解RhB的效率仍然保持在84%,证明了其具有较高的稳定性.
为了进一步研究Ag3PO4/Ag2MoO4的光催化机理,我们用对苯醌、乙二胺四乙酸二钠和丁醇进行了捕捉剂实验.结果表明,超氧自由基和光生空穴在降解有机染料过程中起主要作用.通过光电流测试、复合材料价带导带位置计算以及循环过程样品XRD分析并结合文献结果认为,Z构型Ag3PO4/Ag/Ag2MoO4异质结光催化体系以及可见光照射初期金属Ag纳米颗粒的生成是其具有高光催化活性和稳定性的原因.

关键词: Z型异质结, 磷酸银, 杂化材料, 电荷转移, 光催化

Abstract:

Hole/electron separation and charge transfer are the key processes for enhancing the visible-light photocatalysis performance of heterogeneous photocatalytic systems. To better utilize and understand these effects, binary Ag3PO4/Ag2MoO4 hybrid materials were fabricated by a facile solution-phase reaction and characterized systematically by X-ray diffraction (XRD), energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, field-emission scanning electron microscopy and ultraviolet-visible diffuse-reflectance spectroscopy. Under visible-light illumination, a heterogeneous Ag3PO4/Ag/Ag2MoO4 photocatalyst was constructed and demonstrated enhanced photocatalytic activity and photostability compared with pristine Ag3PO4 toward the remediation of the organic dye rhodamine B. The Ag3PO4/Ag2MoO4 hybrid catalyst with 8% mole fraction of Ag2MoO4 exhibited the highest photocatalytic activity toward the removal of typical dye molecules, including methyl orange, methylene blue and phenol aqueous solution. Moreover, the mechanism of the photocatalytic enhancement was investigated via hole- and radical-trapping experiments, photocurrent measurements, electrochemical impedance spectroscopy and XRD measurements. The XRD analysis revealed that metallic Ag nanoparticles formed initially on the surface of the Ag3PO4/Ag2MoO4 composites under visible-light illumination, leading to the generation of a Ag3PO4/Ag/Ag2MoO4 Z-scheme tandem photocatalytic system. The enhanced photocatalytic activity and stability were attributed to the formation of the Ag3PO4/Ag/Ag2MoO4 Z-scheme heterojunction and surface plasmon resonance of photo-reduced Ag nanoparticles on the surface. Finally, a plasmonic Z-scheme photocatalytic mechanism was proposed. This work may provide new insights into the design and preparation of advanced visible-light photocatalytic materials and facilitate their practical application in environmental issues.

Key words: Z-scheme heterojunction, Silver phosphate, Hybrid material, Charge transfer, Photocatalysis