催化学报 ›› 2016, Vol. 37 ›› Issue (12): 2039-2052.DOI: 10.1016/S1872-2067(16)62578-0

• 综述 • 上一篇    下一篇

微量热技术测量担载型催化剂的吸附/反应能量并与反应性能相关联:综述

李林a, 林坚a, 李筱玉a,b, 王爱琴a, 王晓东a, 张涛a   

  1. a 中国科学院大连化学物理研究所催化基础研究国家重点实验室, 辽宁大连 116023;
    b 中国科学院大学, 北京 100049
  • 收稿日期:2016-09-22 修回日期:2016-10-14 出版日期:2016-12-27 发布日期:2016-12-27
  • 通讯作者: Xiaodong Wang
  • 基金资助:

    国家自然科学基金(21573232,21576251,21676269);科技部重大研究计划(2016YFA0202801);辽宁省科技厅院士基金(2015020086-101).

Adsorption/reaction energetics measured by microcalorimetry and correlated with reactivity on supported catalysts: A review

Lin Lia, Jian Lina, Xiaoyu Lia,b, Aiqin Wanga, Xiaodong Wanga, Tao Zhanga   

  1. a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    b University of Chinese Academy of Science, Beijing 100049, China
  • Received:2016-09-22 Revised:2016-10-14 Online:2016-12-27 Published:2016-12-27
  • Contact: Xiaodong Wang
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21573232, 21576251, 21676269), National Key Projects for Fundamental Research and Development of China (2016YFA0202801), and Department of Science and Technology of Liaoning province under contract of 2015020086-101.

摘要:

多相催化反应过程伴随着反应分子与催化剂表面之间的相互作用.这种相互作用强度与催化剂的反应性能密切相关.根据萨巴蒂尔原理(Sabatier principle),性能最优的催化剂与反应中间体之间应该具有适中的相互作用强度,一方面促进反应物活化,另一方面允许产物脱附.这样,测量和研究反应分子与催化剂之间的相互作用强度对于理解催化反应性能有非常重要的意义.
当气体反应物接触到催化剂表面会伴随着热量的产生,该热量被定义为吸附热,并与吸附物种与催化剂之间形成的化学键强度直接相关.吸附热通常可以通过程序升温脱附(TPD)等方法间接获得.但是这些方法建立在吸附物种能够可逆地吸附和脱附的假设基础上.在实际的程序升温过程中,吸附物种通常会发生分解,并伴随着固体催化剂的重构等现象.因此,采用基于Tian-Calvet原理的热流量热计直接测量担载催化剂的吸附热是最可靠的吸附热测量方法.
基于热流量热计测量的微量热技术的一个重要优点是采用合适的探针分子吸附,可以获得担载型催化剂表面吸附活性中心的数量、强度及其能量分布的定量信息.比如,采用碱性探针分子NH3或者吡啶,酸性探针分子CO2或SO2能够定量催化剂上酸-碱位的强度和数量,而金属催化剂活性中心可以应用H2或CO进行探测.当这些催化剂活性中心的定量表征结果与催化剂的反应活性测试结果相关联时,可以区分不同强度活性中心的反应性能,并为提高和改进催化剂性能提供研制方向.
相对于NH3或CO等小分子气体,催化反应的反应物、产物或可能的中间体通常都是复杂分子,程序升温技术测量它们的吸附热时,这些分子通常会发生分解,限制了其吸附热的测量和研究.微量热技术能够直接测量这些分子的吸附热.因此,与催化反应活性相关联,反应物、产物或可能的中间体的吸附能量的测量和研究有利于更直接地认识催化剂的反应性能.
在催化反应循环过程中,除了吸附,还包括表面反应和脱附步骤.这些步骤也伴随着吸附物种与催化剂之间键的形成与转换,并以热量的形式表现出来.测量这些热量对于认识催化反应过程,理解催化反应机理有重要的意义.热流量热计与催化微反系统相结合,为催化反应过程能量的测量和研究提供了可能.
尽管微量热技术在测量担载型催化剂的吸附/反应能量并与反应性能相关联方面有其独特的优势,但是为了更好地用于催化研究,应该结合其它的表征技术(比如红外)确定吸附或反应物种的本质,结合理论计算对量热结果进行更好地补充和认识.
本文综述了担载型催化剂的吸附/反应能量与反应性能关联的研究进展,指出了微量热技术在催化研究中的优势、不足,以及未来的研究方向.

关键词: 催化, 微量热, 反应性能, 能量, 键强, 催化剂表征

Abstract:

The formations and transformations of the chemical bonds of reactants and intermediates on catalyst surfaces occur in conjunction with the evolution of heat during catalytic reactions. Measurement of this evolved heat is helpful in terms of understanding the nature of the interactions between the catalyst and the adsorbed species, and provides insights into the reactivity of the catalyst. Although various techniques have previously been applied to assessments of evolved heat, direct measurements using a Tian-Calvet microcalorimeter are currently the most reliable method for this purpose. In this review, we summarize the relationship between the adsorption/reaction energetics determined by microcalorimetry and the reactivities of supported catalysts, and examine the important role of microcalorimetry in understanding catalytic performance from the energetic point of view.

Key words: Catalysis, Microcalorimetry, Reactivity, Energetics, Binding strength, Catalyst characterization