催化学报 ›› 2016, Vol. 37 ›› Issue (12): 2079-2085.DOI: 10.1016/S1872-2067(16)62525-1

• 论文 • 上一篇    下一篇

电聚合制备聚苯胺@石墨毡复合电极及其在电芬顿过程中的高效电催化性能

余金礼a, 刘天夫b, 刘海越b, 王毅b   

  1. a 广东省低碳化学与过程节能重点实验室, 中山大学材料科学与工程学院, 广东广州 510275;
    b 中山大学化学工程与技术学院, 广东珠海 519082
  • 收稿日期:2016-08-18 修回日期:2016-09-08 出版日期:2016-12-27 发布日期:2016-12-27
  • 通讯作者: Yi Wang
  • 基金资助:

    科技部政府间科技合作项目(2013DFG62590);国家自然科学基金(21575299,21576300,21276290);广东省自然科学基金(2014A030313150);广州市科技计划项目(201607010104).

Electro-polymerization fabrication of PANI@GF electrode and its energy-effective electrocatalytic performance in electro-Fenton process

Jinli Yua, Tianfu Liub, Haiyue Liub, Yi Wangb   

  1. a The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China;
    b School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
  • Received:2016-08-18 Revised:2016-09-08 Online:2016-12-27 Published:2016-12-27
  • Contact: Yi Wang
  • Supported by:

    This work was supported by the Sino-Greek Science and Technology Cooperation Project (2013DFG62590), the National Natural Science Foundation of China (21575299, 21576300, 21276290), Guangdong Province Nature Science Foundation (2014A030313150), and Guangzhou Science and Technology Plan Project (201607010104).

摘要:

作为一种高级氧化技术(AOPs),芬顿氧化法(Fenton)因其操作简单、绿色高效而备受关注.其基本原理是Fe2+催化H2O2产生的羟基自由基(·OH)进攻有机物使之降解为无机小分子或盐.电芬顿法(Electro-Fenton,E-Fenton)是利用电化学方法原位生成H2O2的Fenton衍生法,其优点在于不需要从外界加入H2O2、高效节能、无选择性、并且易于和其他处理技术耦合,是一种非常有价值和应用前景的新型水处理技术.电芬顿技术的理论探究和工艺优化,是当今高级氧化技术的理论和实践研究的重要内容.E-Fenton过程的关键步骤是阴极材料上氧还原反应(Oxygen reduction reaction,ORR)持续生成H2O2.由于析氢过电位高、稳定性好、性能优异,碳材料成为ORR反应最常用的电催化阴极材料.石墨毡作为一种三维多孔立体材料,具有电化学活性面积大、传质好、导电性强、价格低等优点,是ORR的理想阴极材料.聚苯胺材料作为一种导电高分子材料,价格便宜、加工性好、且含有丰富的N原子,在基础研究和实际应用领域都十分活跃.我们创新性地采用电聚合的方法合成了聚苯胺@石墨毡(PANI@GF)复合电极,并通过降解邻苯二甲酸二甲酯(dimethyl phthalate,DMP)研究了其在电芬顿过程中的电催化性能.
通过扫描电镜、X射线光电子能谱分析对电极表面结构和杂原子掺杂性进行了物化表征.结果显示PANI@GF复合电极同时具有宏观和微观的三维多孔结构,这种结构蓬松的多孔结构为氧气提供了合适的传递通道和足够的反应面积.所制备复合电极中N原子含量约为1.9%,且吡啶N和吡咯N的含量相对较高.这些N原子来自聚苯胺分子中含有的大量N原子,并能够促进ORR反应.石墨毡和聚苯胺两种材料的在结构和组分上的特点,使得PANI@GF复合电极具有优异的电芬顿降解DMP的性能.在DMP浓度为50 mg/L、电位0.5 V(vs.SCE)、氧气流速为0.4 L/min的条件下,其DMP降解反应表观动力学常数达0.0753 min-1,是石墨毡电极表观动力学常数(0.0151 min-1)的5倍.
PANI@GF复合电极制备的最优聚合时间和碳化温度分别为1 h和900℃.这是因为聚合时间太长,可能导致聚苯胺层厚度大,微孔结构被堵塞,进而降低了反应活性面积和影响氧气传质效果,使得电极性能下降;而聚合时间太短,可能导致电极复合不充分.高温碳化可以使石墨毡表面聚苯胺层形成更多的孔结构,从而有利于ORR过程.
DMP降解过程中氧气流速、Fe2+用量以及pH值等工艺条件对电极性能有一定的影响,结果表明其相应的优化值分别为0.4 L/min、1.0 mmol/L和3.0.当氧气流速过低时,溶液中低浓度的溶解氧使ORR过程受传质过程限制,导致电极不能充分反应;当氧气流速过大时,并不会增加已经达到饱和的溶液中的氧气浓度,而过大的氧气速率会冲击电极表面,降低电极稳定性而影响其催化性能.对Fe2+.用量而言,E-Fenton过程有多种Fe循环途径,不同的铁含量对于电极性能影响不明显.因此,1.0 mmol/L的Fe含量足够满足实验需要.pH值对E-Fenton过程至关重要,pH较高时,铁离子会形成配合物,阻碍铁循环,并且会导致H2O2的分解,从而降低电极DMP降解性能;而当pH太低时,较多的酸增加成本,且需要后续处理过程以消除酸的影响.实验结果表明3.0是最优pH值,与传统Fenton方法的最适pH相符.PANI@GF复合电极具有高效催化降解DMP的能力,在电芬顿技术处理有机废水中有潜在应用.

关键词: 电催化, 氧还原, 电聚合, 电芬顿, DMP降解

Abstract:

An energy-effective polyaniline coated graphite felt (PANI@GF) composite cathode for the elec-tro-Fenton (E-Fenton) process was synthesized through an electro-polymerization method. The electrocatalytic activity of the cathode for the 2e-ORR process was investigated and dimethyl phthalate (DMP) was used as a model substrate to evaluate its performance in the E-Fenton process. The as-prepared PANI@GF composite possessed a three-dimensional porous structure, which is favorable for O2 diffusion, while the large amount of N atoms in the conductive polyaniline (PANI) enhanced 2e-ORR reactivity. The DMP degradation of the E-Fenton system using PANI@GF was significantly enhanced owing to the improvement in ORR performance. The apparent kinetic constant for DMP degradation was 0.0753 min-1, five times larger than that of GF. The optimal carbonization temperature and polymerization time for the preparation of the PANI@GF composite cathode was found to be 900℃ and 1 h, respectively. Measurement conditions are a crucial factor for proper evaluation of cathode electrocatalytic performance. Accordingly, the O2 flow rate, Fe2+ concentration, and pH for DMP degradation were optimized at 0.4 L/min, 1.0 mmol/L, and 3.0, respectively. These results indicate that the present PANI@GF composite cathode is energy-effective and promising for potential use as an E-Fenton system cathode for the removal of organic pollutants in wastewater.

Key words: Electrocatalysis, Oxygen reduction reaction, Electro-polymerization, Electro-Fenton, Dimethyl phthalate degradation