催化学报 ›› 2016, Vol. 37 ›› Issue (12): 2122-2133.DOI: 10.1016/S1872-2067(16)62540-8

• 论文 • 上一篇    下一篇

氧化锆担载镍甲烷干重整催化剂的载体形貌效应

李伟作a, 赵忠奎a, 焦艳华b, 王桂茹a   

  1. a 大连理工大学化工与环境生命学部精细化工国家重点实验室, 辽宁大连 116024;
    b 杭州师范大学材料化学与化工学院, 浙江杭州 310036
  • 收稿日期:2016-08-29 修回日期:2016-09-30 出版日期:2016-12-27 发布日期:2016-12-27
  • 通讯作者: Zhongkui Zhao
  • 基金资助:

    国家自然科学基金-煤炭联合基金(U1261104);国家自然科学基金(21276041);教育部新世纪优秀人才支持计划(NCET-12-0079);辽宁省自然科学基金(2015020200);中央高校基本科研业务费专项资金(DUT15LK41);杭州市科技发展计划(20130533B14).

Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane

Weizuo Lia, Zhongkui Zhaoa, Yanhua Jiaob, Guiru Wanga   

  1. a State Key Laboratory of Fine Chemicals, Department of Catalysis Chemistry and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
    b College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
  • Received:2016-08-29 Revised:2016-09-30 Online:2016-12-27 Published:2016-12-27
  • Contact: Zhongkui Zhao
  • Supported by:

    This work was financially supported by the Joint Fund of Coal, set up by National Natural Science Foundation of China and Shenhua Co., Ltd. (U1261104), the National Natural Science Foundation of China (21276041), the Program for New Century Excellent Talents in University (NCET-12-0079), the Natural Science Foundation of Liaoning Province (2015020200), the Fundamental Research Funds for the Central Universities (DUT15LK41), and the Science and Technology Development Program of Hangzhou (20130533B14).

摘要:

煤层气是储量十分丰富的煤炭伴生资源,也是煤炭开采中最大的安全隐患之一,同时还是重要的温室气体.研究煤层气的高效、清洁资源化利用具有资源和环境双重意义.因此,世界主要产煤国均十分重视煤层气的开发和利用.煤层气的主要成分是甲烷,目前主要通过两种方式实现其资源化利用:(1)直接转化,主要通过氧化偶联、催化氧化官能团化或脱氢芳构化等途径将其转化为高碳烃、含氧化合物及芳烃等;(2)间接转化,甲烷首先经催化重整反应制取合成气,而后再经Fischer-Tropsch合成、甲醇化和氢甲酰化等过程来合成饱和烃、烯烃、甲醇及其他含氧化物.对于前者,由于热力学限制,反应收率很低,应用前景较差,而经由合成气这一平台产物的间接转化路线被认为是一条甲烷资源化利用颇具工业前景的转化路线.因此,甲烷催化重整制合成气备受关注.
研究表明,贵金属具有较好的甲烷重整催化性能,但其储量有限、价格昂贵的内在缺陷不利于甲烷大规模转化和资源化利用.Ni基催化剂具有与贵金属可比的催化活性和选择性,且其储量丰富,价格低廉,因此在甲烷重整反应中备受青睐.但是,相对于贵金属,Ni基催化剂易于积碳和烧结失活,这已成为制约其大规模工业化应用的瓶颈.迄今,大量文献报道关注如何提高Ni基催化剂的催化稳定性.而载体形貌调控是调节负载型催化剂的有效途径.本文开展了用作载Ni催化剂的氧化锆载体的形貌调控研究,以期可以有效调节载Ni催化剂的物化性质,进而调控载Ni催化剂的甲烷重整催化性能.
采用水热法成功制备了松球状和鹅卵石状的单斜相氧化锆载体,进一步负载镍,制备了载镍催化剂,用于甲烷重整制合成气反应.具有分级结构的松球状氧化锆载Ni催化剂(Ni/ZrO2-ipch)展示出比鹅卵石状氧化锆和常规氧化锆纳米粒子载Ni催化剂显著好的催化活性和稳定性.采用XRD、N2吸附、TEM、H2-TPR、CO化学吸附、CO2-TPD、XPS和TGA等手段研究了松球状氧化锆载Ni催化剂高催化活性和稳定性的原因和机制.发现,其较高的催化活性主要归因于高的Ni分散度、改善的可还原性、促进的氧流动性以及较多的碱性位和较强的碱性,这些物化性质依赖于氧化锆载体的独特形貌.分级结构的松球状氧化锆载Ni催化剂高的甲烷重整催化稳定性主要源于催化剂的高抗烧结、抗积碳性能.加强的金属载体效应和介孔限域效应可以阻止金属Ni的高温烧结,而优良的抗积碳稳定性主要源于催化剂良好的氧流动性、较多的碱性位、较强的碱性以及小的Ni粒子尺寸.
鉴于分级结构松球状氧化锆载Ni催化剂高的催化活性和优良的抗积碳、抗烧结稳定性,该催化剂用于甲烷重整制合成气具有广阔前景.而所制备的分级结构松球状氧化锆由于具有独特的结构和优良的热稳定性,可以作为性能优良的载体用于其他反应,尤其对于高温转化过程可望表现出明显优势.

关键词: 镍基催化剂, 氧化锆载体, 分级结构, 形貌效应, 甲烷干重整, 合成气, 抗积碳

Abstract:

An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mobility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrO2-ip orignated from the coke-removalability of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch support. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction.

Key words: Ni-based catalyst, ZrO2 support, Hierarchical structure, Morphology effect, Dry reforming of methane, Synthesis gas, Coke resistance