催化学报 ›› 2017, Vol. 38 ›› Issue (2): 240-252.DOI: 10.1016/S1872-2067(17)62759-1

• 论文 • 上一篇    下一篇

利用Ni(OH)x助催化剂修饰提高g-C3N4纳米片/WO3纳米棒Z型纳米体系的可见光产氢活性的研究

何科林a,b,c, 谢君a,b,c, 罗杏宜a,c, 温九青a,b,c, 马松a,b,c, 李鑫a,b,c, 方岳平a, 张向超d   

  1. a 华南农业大学材料与能源学院, 广东广州 510642;
    b 华南农业大学林学与风景园林学院, 广东广州 510642;
    c 华南农业大学新能源与新材料研究所, 农业部能源植物资源与利用重点实验室, 广东省高校生物质能源重点实验室, 广东广州 510642;
    d 长沙学院环境光催化应用技术省重点实验室, 湖南长沙市 410022
  • 收稿日期:2016-10-30 修回日期:2016-11-20 出版日期:2017-02-18 发布日期:2017-03-14
  • 通讯作者: Xin Li,Tel:+86-20-85285633;Fax:+86-20-85285596;E-mail:xinliscau@yahoo.com
  • 基金资助:

    国家自然科学基金(51672089);广州市产学研协同创新重大专项(201508020098);材料复合新技术国家重点实验室(武汉理工大学)开放基金(2015-KF-7);环境与能源光催化湖南省高等学校“2011协同创新中心”(长沙学院环境光催化应用技术省重点实验室)开放课题(CCSU-XT-04).

Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)x cocatalysts

Kelin Hea,b,c, Jun Xiea,b,c, Xingyi Luoa,c, Jiuqing Wena,b,c, Song Maa,b,c, Xin Lia,b,c, Yueping Fanga, Xiangchao Zhangd   

  1. a College of Materials and Energy, Guangzhou 510642, Guangdong, China;
    b College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, Guangdong, China;
    c Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture, Key Laboratory of Biomass Energy of Guangdong Regular Higher Education Institutions, Institute of New Energy and New Materials, South China Agricultural University, Guangzhou 510642, Guangdong, China;
    d Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, Hunan, China
  • Received:2016-10-30 Revised:2016-11-20 Online:2017-02-18 Published:2017-03-14
  • Contact: 10.1016/S1872-2067(17)62759-1
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51672089), the Industry and Research Collaborative Innovation Major Projects of Guangzhou (201508020098), the State Key Laboratory of Advanced Technology for Material Synthesis and Processing (Wuhan University of Technology) (2015-KF-7) and the Hunan Key Laboratory of Applied Environmental Photocatalysis (Changsha University) (CCSU-XT-04).

摘要:

光催化技术是目前解决能源和环境问题最具前景的手段之一,因此寻找高效光催化剂已成为光催化技术的研究热点.而在众多半导体催化剂中,廉价、环保且性能稳定的g-C3N4光催化剂在太阳光开发利用方面尤其引人关注.然而,由于g-C3N4的比表面小,活性位点少,以及光生电子/空穴对易复合等不足,严重导致其较低的光催化量子效率.因此,构造Z型体系和负载助催化剂等策略被广泛应用于提高g-C3N4光催化效率.在过去几年中,TiO2,Bi2WO6,WO3,Bi2MoO6,Ag3PO4和ZnO已经被成功证实可以与g-C3N4耦合而构造Z型光催化剂体系.其中,WO3/g-C3N4光催化剂体系,具有可见光活性的WO3导带中的光生电子和g-C3N4价带中的光生空穴容易实现Z型复合,从而保留了WO3的强氧化能力和g-C3N4的高还原能力,最终大幅度提高了整个体系的光催化活性.在g-C3N4的各种产氢助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来各种非贵金属助催化剂(包括纳米碳,Ni,NiS,Ni(OH)2,WS2和MoS2等)得到了广泛的关注.我们采取廉价且丰富的Ni(OH)x助催化剂修饰g-C3N4/WO3耦合形成的Z型体系,开发出廉价高效的WO3/g-C3N4/Ni(OH)x三元产氢光催化体系.在该三元体系中,Ni(OH)x和WO3分别用于促进g-C3N4导带上光生电子和价带的光生空穴的分离及利用,从而使得高能的g-C3N4的光生电子在Ni(OH)x富集并应用于光催化产氢,而高能的WO3的光生空穴被应用于氧化牺牲剂三乙醇胺,最终实现了整个体系的高效光催化产氢活性及稳定性.
我们通过直接焙烧钨酸铵和硫脲制备出WO3纳米棒/g-C3N4,并采用原位光沉积方法将Ni(OH)x纳米颗粒负载到WO3/g-C3N4上.随后,我们采取X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱分析(XPS)和比表面和孔径分布等表征手段来研究光催化剂的结构与形貌;采取紫外-可见漫反射表征方法来研究其光学性能;采取荧光光谱,阻抗和瞬态光电流曲线等表征手段来测试光催化剂的电荷分离性能;采取极化曲线和电子自旋共振谱等表征手段来证明光催化机理;采取光催化分解水产氢的性能测试来研究光催化剂的光催化活性与稳定性.XRD,HRTEM和XPS表征结果,表明WO3为有缺陷的正交晶系的晶体,直径为20-40纳米棒且均匀嵌入在g-C3N4纳米片上;Ni(OH)x为Ni(OH)2与Ni的混合物,其Ni(OH)2与Ni的摩尔比为97.4:2.6,Ni(OH)x粒径为20-50 nm且均匀分散在g-C3N4纳米片上,WO3/g-C3N4/Ni(OH)x催化剂界面之间结合牢固,其中WO3和Ni(OH)x均匀分布在g-C3N4上.紫外-可见漫反射表征结果表明,随着缺陷WO3的负载量增加,复合体系的吸收边与g-C3N4相比产生明显的红移,而加入Ni(OH)x助催化剂使得催化剂体系的颜色由黄变黑,明显地增加了可见光的吸收.荧光光谱,阻抗和瞬态光电流曲线结果表明,WO3和Ni(OH)x的加入能有效地促进光生电子/空穴的分离.极化曲线结果表明,掺入WO3和Ni(OH)x能降低g-C3N4的析氢过电位,从而提高光催化剂表面的产氢动力学.·O2-和·OH电子自旋共振谱表明成功形成了WO3/g-C3N4耦合Z型体系.光催化分解水产氢的性能测试表明,20% WO3/g-C3N4/4.8% Ni(OH)x产氢效率最高(576 μmol/(g·h)),分别是g-C3N4/4.8% Ni(OH)x,20% WO3/g-C3N4和纯g-C3N4的5.7,10.8和230倍.上述结果充分证明,Ni(OH)x助催化剂修饰和g-C3N4/WO3 Z型异质结产生了极好的协同效应,最终实现了三元体系的极高的光催化产氢活性.

关键词: 光催化产氢, 稳定的Ni(OH)x催化剂, g-C3N4, Z型体系, 异质结

Abstract:

Novel WO3/g-C3N4/Ni(OH)x hybrids have been successfully synthesized by a two-step strategy of high temperature calcination and in situ photodeposition. Their photocatalytic performance was investigated using TEOA as a hole scavenger under visible light irradiation. The loading of WO3 and Ni(OH)x cocatalysts boosted the photocatalytic H2 evolution efficiency of g-C3N4. WO3/g-C3N4/Ni(OH)x with 20 wt% defective WO3 and 4.8 wt% Ni(OH)x showed the highest hydrogen production rate of 576 μmol/(g·h), which was 5.7, 10.8 and 230 times higher than those of g-C3N4/4.8 wt% Ni(OH)x, 20 wt% WO3/C3N4 and g-C3N4 photocatalysts, respectively. The remarkably enhanced H2 evolution performance was ascribed to the combination effects of the Z-scheme heterojunction (WO3/g-C3N4) and loaded cocatalysts (Ni(OH)x), which effectively inhibited the recombination of the photoexcited electron-hole pairs of g-C3N4 and improved both H2 evolution and TEOA oxidation kinetics. The electron spin resonance spectra of ·O2- and ·OH radicals provided evidence for the Z-scheme charge separation mechanism. The loading of easily available Ni(OH)x cocatalysts on the Z-scheme WO3/g-C3N4 nanocomposites provided insights into constructing a robust multi-ple-heterojunction material for photocatalytic applications.

Key words: Photocatalytic hydrogen evolution, Robust Ni(OH)x cocatalyst, g-C3N4, Z-Scheme systems, Heterojunction