催化学报 ›› 2017, Vol. 38 ›› Issue (3): 529-536.DOI: 10.1016/S1872-2067(17)62750-5

• 论文 • 上一篇    下一篇

PtSnNa/SUZ-4:丙烷脱氢反应的高效催化剂

周华兰a, 龚静静a, 许波连a, 邓生财a, 丁元华b, 俞磊a,b, 范以宁a   

  1. a 南京大学化学化工学院介观化学教育部重点实验室, 江苏南京 210093;
    b 扬州大学化学化工学院江苏省环境材料与环境工程重点实验室, 江苏扬州 225002
  • 收稿日期:2016-11-16 修回日期:2016-12-17 出版日期:2017-03-18 发布日期:2017-03-22
  • 通讯作者: Lei Yu, Yining Fan
  • 基金资助:

    江苏省博士后科研资助计划(1301080C);国家自然科学基金(21202141, 21173182); 扬州关键科技特定项目(YZ20122029); 扬州大学创新培育基金(2015CXJ009).

PtSnNa/SUZ-4: An efficient catalyst for propane dehydrogenation

Hualan Zhoua, Jingjing Gonga, Bolian Xua, Shengcai Denga, Yuanhua Dingb, Lei Yua,b, Yining Fana   

  1. a Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Provincial Key Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, Jiangsu, China;
    b Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Received:2016-11-16 Revised:2016-12-17 Online:2017-03-18 Published:2017-03-22
  • Supported by:

    This work was supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (1301080C), NNSFC (21202141, 21173182), Key Science & Technology Specific Projects of Yangzhou (YZ20122029), the Innovation Foundation of Yangzhou University (2015CXJ009).

摘要:

丙烷脱氢制丙烯是优化利用炼厂气和油田伴生气资源的一条重要途径.随着丙烯需求量的逐步增加,丙烷脱氢制丙烯日益受到重视.负载型PtSn/γ-Al2O3催化剂具有优良的丙烷脱氢活性和选择性,但在高温、低氢压的反应条件下,催化剂易积炭而失活.近年来,选用了微孔分子筛如ZSM-5和介孔分子筛如SBA-15和MCM-41作为PtSn催化剂的载体,结果表明,具有规整孔道结构的负载型PtSn/分子筛催化剂的丙烷脱氢反应稳定性明显优于PtSn /γ-Al2O3催化剂.SUZ-4分子筛与ZSM-5分子筛结构相似且孔径相当,所不同的是ZSM-5由十元环交叉孔道组成,而SUZ-4由十元环和八元环孔道垂直相交组成.我们用微型催化反应装置结合XRD、BET比表面积和孔体积测试、NH3吸附-程序升温脱附(NH3-TPD)、氢化学吸附、热重分析(TG)、H2程序升温还原(H2-TPR)和程序升温氧化(TPO)等多种物理化学手段研究了负载型PtSnNa/SUZ-4和PtSnNa/ZSM-5催化剂的结构和丙烷脱氢反应性能,以及这两种催化剂在丙烷脱氢反应中催化性能差异的原因.
实验结果显示,在丙烷脱氢反应中,负载型PtSnNa/SUZ-4催化剂上丙烯选择性和反应稳定性明显优于PtSnNa/ZSM-5催化剂,说明载体一定程度上会影响催化剂上丙烷脱氢反应性能.XRD,BET比表面积和孔体积测试等表征手段结果表明,SUZ-4和ZSM-5的孔体积和比表面积比较接近,载体的结构又类似,且两者的积碳量也相近,故载体的基本性质和积碳量的差异不是引起催化剂性能差异的原因.NH3-TPD结果表明,H-SUZ-4的酸强度明显强于H-ZSM-5.由于浸渍法制备负载型PtSn催化剂所用前体为具有强酸性的混合溶液(H2PtCl6+SnCl4),存在于SUZ-4分子筛孔道内表面的强酸中心不利于上述前体与SUZ-4分子筛孔道内表面结合.ZSM-5分子筛孔道内表面比较弱的强酸中心,促进了催化剂前体在ZSM-5分子筛孔道内表面的分散与结合.和ZSM-5为载体的催化剂相比,PtSnNa/SUZ-4上Pt粒子大部分分散在载体的外表面,从而金属上的积碳不易引起催化剂的失活.故多孔材料上Pt的分布是影响催化活性差异的主要原因.
为进一步证明多孔材料上Pt的分布是影响催化活性差异的主要原因,我们通过二苯并噻吩预处理催化剂的手段证明Pt粒子在分子筛孔内外的分布情况.由于二苯并噻吩的尺寸比较大(0.8 nm)不能进入到分子筛的孔道内(SUZ-4:0.56 nm,ZSM-5:0.56 nm),所以载体孔道外的部分Pt会被二苯并噻吩预处理而失去活性,而孔道内的Pt不会因为预处理仍具有催化活性.实验结果表明,PtSnNa/SUZ-4经过二苯并噻吩预处理后,催化活性大大降低;而PtSnNa/ZSM-5经过二苯并噻吩预处理后,催化活性几乎没有变化.说明PtSnNa/SUZ-4上Pt粒子大部分分散在载体的外表面,从而金属上的积碳不易引起催化剂的失活.

关键词: SUZ-4分子筛, 铂锡钠催化剂, 丙烷脱氢反应, 催化剂稳定性, Pt的分布

Abstract:

The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD, nitrogen adsorption, NH3-TPD, TG, H2-TPR and TPO techniques combined with propane dehydrogenation tests. It has been shown that SUZ-4-supported PtSnNa (PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5, owing to its higher catalytic activity and stability. Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts. The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity. In contrast to ZSM-5-supported catalysts, Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition. This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H2PtCl6 into the zeolite. In contrast, the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels, followed by transformation to highly dispersed Pt clusters during calcination. In the case of the PtSnNa/ZSM-5, the interactions between Sn oxides and the support were lessened, owing to the weaker acidity of the ZSM-5 zeolite. The dispersed Sn oxides were therefore easier to reduce to the metallic state, thus decreasing the catalytic activity for hydrocarbon dehydrogenation.

Key words: SUZ-4 zeolite, PtSnNa catalyst, Propane dehydrogenation, Catalyst stability, Pt distribution