催化学报 ›› 2017, Vol. 38 ›› Issue (3): 597-606.DOI: 10.1016/S1872-2067(17)62779-7

• 论文 • 上一篇    下一篇

表面活性剂辅助水热制备形貌结构可控的MoS2及其蒽加氢性能

李敏a,b,c, 王冬娥b, 李佳鹤b,c, 潘振栋b, 马怀军b, 姜玉霞b,c, 田志坚b,d, 陆安慧a   

  1. a 大连理工大学化工学院精细化工国家重点实验室, 辽宁大连 116024;
    b 中国科学院大连化学物理研究所洁净能源国家实验室(筹), 辽宁大连 116023;
    c 中国科学院大学, 北京 100049;
    d 中国科学院大连化学物理研究所催化基础国家重点实验室, 辽宁大连 116023
  • 收稿日期:2016-11-30 修回日期:2016-12-30 出版日期:2017-03-18 发布日期:2017-03-22
  • 通讯作者: Zhijian Tian
  • 基金资助:

    国家自然科学基金(21303186);中国科学院重点战略研究项目(XDA07020300).

Surfactant-assisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation

Min Lia,b,c, Donge Wangb, Jiahe Lib,c, Zhendong Panb, Huaijun Mab, Yuxia Jiangb,c, Zhijian Tianb,d, Anhui Lua   

  1. a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
    b Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    c University of Chinese Academy of Sciences, Beijing 100049, China;
    d State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, ChiZhendong nese Academy of Sciences, Dalian 116023, Liaoning, China
  • Received:2016-11-30 Revised:2016-12-30 Online:2017-03-18 Published:2017-03-22
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21303186) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07020300).

摘要:

随着原油资源重质化和劣质化的加剧以及对清洁燃料油品需求的不断增加,将重质油加工成清洁燃料成为现代炼厂面临的挑战.悬浮床加氢是重质油转化为清洁液体燃料的先进技术,其核心难题是高效加氢催化剂的开发.MoS2在石油化工领域油品加氢提质研究中表现出非常好的催化加氢性能.MoS2晶体结构中有两种面: 沿S-Mo-S层间的剥离面,又称基面,化学性质稳定;沿Mo-S的断裂面,又称棱面,具有大量的不饱和键,化学性质不稳定,可做催化活性中心.由于MoS2结构和形貌对其物理化学性能有重要影响,所以通过合理设计和调控MoS2的结构和形貌可增加暴露的催化活性位,进而改善其催化性能.
本文以七钼酸铵和硫代乙酰胺为原料,水合肼做还原剂,采用不同表面活性剂(包括PEG,PVP,P123,SDS,AOT和CTAB)辅助的水热合成法制备了结构及形貌可控的MoS2,并提出不同表面活性剂条件下MoS2催化剂的生长机理,进一步研究了重油模型化合物稠环芳烃蒽的催化加氢性能.结果表明,在不同表面活性剂辅助的条件下分别制得了由MoS2纳米片组装而成的球形、块状和花状的MoS2产物;通过改变表面活性剂种类可调变MoS2纳米片的长度、堆积层数、层间距以及最终产物的形貌.在PEG或PVP辅助下得到了球形MoS2产物,其中MoS2纳米片长<15 nm,堆积层数<6.在PEG辅助下制备的球形MoS2粒径约为250 nm,尺寸均一且分散性好.在PVP辅助下MoS2粒径在200-450 nm,粒径分布范围宽且有明显团聚.在P123或SDS辅助下得到了团聚较明显的块状微米级MoS2产物.在P123辅助下得到的MoS2纳米片长<15 nm,层数<6.在SDS辅助下制备的MoS2纳米片长>20 nm,堆积层数>8.在AOT或CTAB辅助下得到团聚比较严重的花状微米级MoS2产物,其中MoS2纳米片长>20 nm,堆积层数>8.另外,水热反应过程中,高温高压的环境促进了反应体系中游离的NH4+插入到MoS2层状结构中,导致MoS2纳米片层间距增大.基于此,本文提出了不同表面活性剂辅助的水热过程中不同结构和形貌MoS2产物的形成机理.
对不同结构和形貌的MoS2样品进行了悬浮床蒽加氢催化性能评价.结果表明,PEG辅助制备的MoS2催化剂具有最高催化加氢活性.该MoS2催化剂中纳米片层短,堆积层数少,暴露了更多的加氢活性位.单分散的球形MoS2颗粒粒径小,分散性好,有利于加氢活性位的充分暴露,进而表现出较好的催化性能.本文所采用的表面活性剂辅助的水热法为可控合成不同结构和形貌的过渡金属硫化物提供了有效指导和借鉴.

关键词: 二硫化钼, 表面活性剂辅助, 形貌可控, 单分散, 活性位, 蒽加氢

Abstract:

MoS2 samples with controllable morphologies and structures were synthesized using surfactant-assisted hydrothermal processes. The effects of surfactants (PEG, PVP, P123, SDS, AOT, and CTAB) on the morphologies and structures of MoS2 samples were investigated. The results revealed that spherical, bulk-like, and flower-like MoS2 particles assembled by NH4+-intercalated MoS2 nano-sheets were synthesized. The morphologies of the MoS2 samples and their structures (including the slab length and the number of stacked layers) of MoS2 nano-sheets in these samples could be controlled by adjusting the surfactants. Mono-dispersed spherical MoS2 particles could be synthesized with PEG via the creation of MoS2 nano-sheets with slab lengths shorter than 15 nm and fewer than six stacked layers. Possible formation mechanisms of these MoS2 samples created via surfactant-assisted hydrothermal processes are proposed. Further, the catalytic activities of MoS2 samples for anthracene hydrogenation were evaluated in a slurry-bed reactor. The catalyst synthesized with the surfactant PEG exhibited the highest catalytic hydrogenation activity. Compared with the other catalysts, it had a smaller particle size, mono-dispersed spherical morphology, shorter slab length, and fewer stacked layers; these were all beneficial to exposing its active edges. This work provides an efficient approach to synthesize transition metal sulfides with controllable morphologies and structures.

Key words: Molybdenum sulfide, Surfactant-assisted, Controllable morphology, Mono-dispersed, Active edges, Anthracene hydrogenation