催化学报 ›› 2017, Vol. 38 ›› Issue (6): 951-969.DOI: 10.1016/S1872-2067(17)62801-8

• 综述 • 上一篇    下一篇

氧还原电化学催化剂研究的最新进展

孔建飞a, 程文龙b,c   

  1. a. 盐城卫生职业技术学院, 江苏盐城 224000;
    b. 莫纳什大学工程学院化工系, 维多利亚州3800, 澳大利亚;
    c. 墨尔本纳米制造中心, 维多利亚州3168, 澳大利亚
  • 收稿日期:2017-01-15 修回日期:2017-02-15 出版日期:2017-06-18 发布日期:2017-06-08
  • 通讯作者: 孔建飞, 程文龙
  • 基金资助:

    澳大利亚研究理事会项目(DP140100052,DP150103750);江苏省高职院校教师专业带头人高端研修项目(2016TDFX013);盐城卫生职业技术学院高层次人才科研启动,盐城卫生职业技术学院科技创新团队项目

Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction

Jianfei Konga, Wenlong Chengb,c   

  1. a. Yancheng Vocational Institute of Health Sciences, Yancheng 224000, Jiangsu, China;
    b. Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia;
    c. Melbourne Centre for Nanofabrication, Clayton, VIC 3168, Australia
  • Received:2017-01-15 Revised:2017-02-15 Online:2017-06-18 Published:2017-06-08
  • Supported by:

    This work was supported by the Australian Research Councile Discovery Projects (DP140100052, DP150103750), Advanced Study and Training Program of Jiangsu Vocational Education (2016TDFX013), High Level Talent Fund of Yancheng Vocational Institute of Health Sciences and Scientific Innovation Team Project of Yancheng Vocational Institute of Health Sciences

摘要:

燃料电池可以在接近室温条件下将氢或烃类中蕴含的巨大化学能通过电化学途径直接转化为清洁、稳定、可持续的电能,因而被视为极有前景的、能够满足日益增长的世界能源需求的终极解决方案之一. 在一个典型的氢燃料电池中,氢在正极氧化而氧在负极还原,从动力学角度说,氧还原反应(ORR)比氢氧化反应进行的慢得多. 无论是在酸性还是碱性条件下,氧的还原都可以一个四电子过程或是两个双电子过程进行,当然在酸性和碱性环境中反应的机理不同. 铂一直是最有效的ORR催化剂,但受到价格昂贵、稳定性差和易中毒等因素的制约,目前非铂催化剂成为越来越引人瞩目的发展方向. 本综述试图从分子催化剂、金属纳米材料催化剂、金属氧化物催化剂和新兴的二维材料催化剂等方面,选取近十年来最能代表ORR电化学催化剂方面成就的例子分析其优缺点,并为今后该领域的研究提供一些有益的思路.
典型的分子催化剂是卟啉类化合物,当这种四齿的N4配体与过渡金属特别是铁、钴络合时,往往显示出良好的ORR催化性能,多数情况下其中的过渡金属中心、配体和碳支撑体系共同组成催化剂的活性中心. 在另一些报道中,邻菲罗啉或是连吡啶型N2化合物也可以作为配体使用. 第四和第五副族的很多金属形成的不同价态的氧化物都具有氧还原活性,比如MnOx,CoOx,TiOx,ZrOx,IrOx等. 金属氧化物表现出易于修饰,不容易团聚和抗腐蚀等诸多优点,而其良好的ORR性能与表面的缺陷密切相关,因此钙钛矿型氧化物ABOx也引起人们的广泛关注,人们可以通过调节氧化物的晶型、尺寸和组成来获得更好的催化性能. 近年来随着液相合成技术的发展,人们可以制备出理想形状和尺寸的单分散纳米粒子,然后通过旋涂、自组装等手段将其修饰到合适的电极上以获得增强性能的ORR催化剂. 通过形状与尺寸调控,或组合成其它复杂的纳米结构,都有可能提高催化活性或是稳定性,因此有关纳米催化剂的研究日趋增多. 在此基础上,考虑到石墨烯的可修饰性和良好的电化学性能,纳米材料复合石墨烯所形成的二维或三维结构也可提供很好的氧还原催化性能,而MoS2代替石墨烯作为支撑物所构成的二维催化剂也是值得注意的研究方向.
综上所述,尽管现有的非铂催化剂仍难以完全满足商业化的要求,设计理念和合成方法的快速发展有望在不远的将来解决这一难题. 而设计合成可控尺寸、形状、组成和表面形貌的纳米催化剂在很大程度上将加速这一进程.

关键词: 氧还原反应, 电催化剂, 纳米材料, 分子电催化剂, 二维材料

Abstract:

The quest for low-cost yet efficient non-Pt electrocatalysts for the oxygen reduction reaction (ORR) has become one of the main focuses of research in the field of catalysis, which has implications for the development of the next generation of greener fuel cells. Here, we comprehensively describe the ‘big picture’ of recent advances made in the rational design of ORR electrocatalysts, including molecule-based, metal-oxide-based, metal-nanomaterial-based and two-dimensional electrocatalysts. Transition metals can fabricate molecular electrocatalysts with N4-macrocycles such as porphyrin-class compounds and the so-formed M-N-C active centre plays a crucial role in determining the catalytic performances towards the ORR. Group-IV and-V Transition metal oxides represent another class of promising alternative of Pt-based catalysts for the ORR which catalytic activity largely depends on the surface structure and the introduction of surface defects. Recent advances in synthesis of metallic nanoparticles (NPs) allow for precise control over particle sizes and shapes and the crystalline facets exposed to enhance the ORR performance of electrocatalysts. Two-dimensional materials such as functionalized grapheme or MoS2 are emerging as novel electrocatalysts for the ORR. This review covers various aspects towards the design of future ORR electrocatalysts, including the catalytic performance, stability, durability and cost. Some novel electrocatalysts even surpass commercial Pt/C systems, demonstrating their potential to be alternatives in industrial applications. Despite the encouraging progress, challenges, which are also described, remain to be overcome before the real-world application of novel ORR electrocatalysts.

Key words: Oxygen reduction reaction, Electrocatalyst, Nanomaterial, Molecular electrocatalyt, Two-dimensional material