催化学报 ›› 2017, Vol. 38 ›› Issue (6): 1079-1086.DOI: 10.1016/S1872-2067(17)62820-1

• 论文 • 上一篇    下一篇

钙铝掺杂镧锰钙钛矿高效催化剂用于两步法热化学分解水取得出色产氢表现

王路路a, Mohammad AL-MAMUNa, 刘珀润a, 王云a, 杨化桂b, 赵惠军a,c   

  1. a. 格里菲斯大学清洁环境和能源中心, 昆士兰4222, 澳大利亚;
    b. 华东理工大学材料科学与工程学院, 上海 200237, 中国;
    c. 中国科学院合肥固体物理研究所, 安徽合肥 230031, 中国
  • 收稿日期:2017-02-17 修回日期:2017-03-19 出版日期:2017-06-18 发布日期:2017-06-08
  • 通讯作者: 赵惠军
  • 基金资助:

    澳大利亚科学研究基金(FT120100913);国家自然科学基金(51372248,51432009)

La1-xCaxMn1-yAlyO3 perovskites as efficient catalysts for two-step thermochemical water splitting in conjunction with exceptional hydrogen yields

Lulu Wanga, Mohammad Al-Mamuna, Porun Liua, Yun Wanga, Hua Gui Yangb, Huijun Zhaoa,c   

  1. a. Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia;
    b. Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
    c. Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, Anhui, China
  • Received:2017-02-17 Revised:2017-03-19 Online:2017-06-18 Published:2017-06-08
  • Supported by:

    This work was supported by the Australian Research Council (FT120100913) and the National Natural Science Foundation of China (51372248, 51432009)

摘要:

太阳能热化学分解水是一种高效生产清洁和可再生氢能源的方法. 由于出色的催化活性和太阳能燃料生产能力,钙钛矿型的催化剂在热化学领域引起了强烈关注. 我们采用改良的Pechini法合成了一系列钙铝掺杂的镧锰钙钛矿并系统考察了其在两步法热化学分解水中的产氢表现. 为了优化热化学催化性能,我们进行了镧锰钙钛矿A,B位上钙和铝的掺杂量(从0.2到0.8)的详细考察. 通过调整掺杂比例,得到了一种极其高效的钙钛矿催化剂La0.6Ca0.4Mn0.6Al0.4O3. 当两步法热化学分解水在1400和1000 ℃之间,La0.6Ca0.4Mn0.6Al0.4O3取得了429 μmol/g的出色产氢表现,比同等条件下基准催化剂氧化铈产氢结果高出8倍. 与此同时,钙铝掺杂镧锰钙钛矿在两步法热化学循环测试中展现出极其稳定的催化活性. 因此,这种新颖的钙铝掺杂镧锰钙钛矿具备巨大的潜质用于未来热化学太阳能燃料的实际生产.

关键词: 两步法热化学, 水分解, 太阳能燃料, 钙钛矿型氧化还原催化剂, 产氢

Abstract:

Solar-driven thermochemical water splitting represents one efficient route to the generation of H2 as a clean and renewable fuel. Due to their outstanding catalytic abilities and promising solar fuel production capacities, perovskite-type redox catalysts have attracted significant attention in this regard. In the present study, the perovskite series La1-xCaxMn1-yAlyO3 (x, y = 0.2, 0.4, 0.6, or 0.8) was fabricated using a modified Pechini method and comprehensively investigated to determine the applicability of these materials to solar H2 production via two-step thermochemical water splitting. The thermochemical redox behaviors of these perovskites were optimized by doping at either the A (Ca) or B (Al) sites over a broad range of substitution values, from 0.2 to 0.8. Through this doping, a highly efficient perovskite (La0.6Ca0.4Mn0.6Al0.4O3) was developed, which yielded a remarkable H2 production rate of 429 μmol/g during two-step thermochemical H2O splitting, going between 1400 and 1000 ℃. Moreover, the performance of the optimized perovskite was found to be eight times higher than that of the benchmark catalyst CeO2 under the same experimental conditions. Furthermore, these perovskites also showed impressive catalytic stability during two-step thermochemical cycling tests. These newly developed La1-xCaxMn1-yAlyO3 redox catalysts appear to have great potential for future practical applications in thermochemical solar fuel production.

Key words: Two-step thermochemical route, Water splitting, Solar fuel, Perovskite-type redox catalyst, Hydrogen production