催化学报 ›› 2017, Vol. 38 ›› Issue (6): 1087-1100.DOI: 10.1016/S1872-2067(17)62813-4

• 论文 • 上一篇    

催化甘油脱水反应的酸活化蒙脱石负载WOx催化剂的研究

俞卫华a,b, 王朋朋b, 周春晖b,c,d, 赵汉彬b, 童东绅b, 张浩b, 杨慧敏e, 季生福f, 王浩c   

  1. a. 浙江工业大学之江学院, 浙江杭州 310024, 中国;
    b. 浙江工业大学化学工程学院, 绿色化学合成技术国家重点实验室培育基地, 浙江杭州 310032, 中国;
    c. 南昆士兰大学未来材料研究所, 图文巴4350, 澳大利亚;
    d. 浙江省地质矿产研究所, 浙江省非金属矿物工程研究中心, 浙江杭州 310007, 中国;
    e. 国家林业局竹子研究开发中心, 浙江省竹子高效加工重点实验室, 浙江杭州 310012, 中国;
    f. 北京化工大学, 化工资源有效利用国家重点实验室, 北京 100029, 中国
  • 收稿日期:2017-01-13 修回日期:2017-03-10 出版日期:2017-06-18 发布日期:2017-06-08
  • 通讯作者: 周春晖
  • 基金资助:

    国家自然科学基金(21373185,41672033,21506188,21404090);浙江省非金属矿工程研究中心开放基金项目(ZD2015K07);绿色化学合成技术国家重点实验室培育基地开放基金项目(GCTKF2014006);浙江省竹子高效加工重点实验室开放基金项目(2016);北京化工大学化工资源有效利用国家重点实验室开放基金项目(CRE-2016-C-303)

Acid-activated and WOx-loaded montmorillonite catalysts and their catalytic behaviors in glycerol dehydration

Weihua Yua,b, Pengpeng Wangb, Chunhui Zhoub,c,d, Hanbin Zhaob, Dongshen Tongb, Hao Zhangb, Huimin Yange, Shengfu Jif, Hao Wangc   

  1. a. Zhijiang College, Zhejiang University of Technology, Hangzhou 310024, Zhejiang, China;
    b. Research Group for Advanced Materials & Sustainable Catalysis (AMSC), Research Center for Clay Minerals, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Discipline of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China;
    c. Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland 4350, Australia;
    d. Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resource, Hangzhou 310007, Zhejiang, China;
    e. Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China;
    f. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2017-01-13 Revised:2017-03-10 Online:2017-06-18 Published:2017-06-08
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (21373185, 41672033, 21506188, 21404090), the Open Project Programs of Engineering Research Center of Non-metallic Minerals of Zhejiang Province (ZD2015k07), of State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology (GCTKF2014006), of Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province (2016), and of State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology (CRE-2016-C-303)

摘要:

甘油是一种可由生物资源生产、可持续的、可降解的平台化学品,是生物柴油、肥皂化工等工业生产过程中的主要副产物. 催化甘油脱水反应生产丙烯醛,有望能替代丙烯等石油裂解产物合成丙烯醛的传统工业路线. 丙烯醛是一种重要的化工中间体,被用于合成蛋氨酸、丙烯酸、3-甲基吡啶和1,3-丙二醇,并被广泛地应用于农药、医药、高分子材料等领域. 随着全球可持续能源发展,生物柴油生产迅速发展,将产生大量的副产物甘油. 利用甘油为原料,通过合适的催化剂的催化脱水反应生成丙烯醛,是近十多年来国内外工业催化的研究热点之一.
用于催化甘油脱水合成丙烯醛的酸催化剂有杂多酸、金属氧化物、沸石与酸性粘土矿物等. 钨磷杂多酸(H3PW12O40)负载的催化剂虽然具有较强的酸性,有利于催化甘油脱水,但容易导致结焦,而且热稳定差,容易失活. 钨磷杂多酸负载于SiO2,TiO2,Al2O3,SiO2-Al2O3,K-10蒙脱石上表现出不同的催化活性,表明催化剂和载体的表面酸性和孔结构影响催化性能. 近来研究发现,负载于ZrO2,Al2O3的钨氧化物(WOx)催化剂热稳定性好、酸性高,在甘油脱水反应生成丙烯醛中表现出良好的催化性能. 但有关钨氧化物(WOx)结构、催化活性受载体组成、酸性影响的本质和规律一直不清楚. 本文采用20 wt%的硫酸、盐酸、磷酸和乙酸对蒙脱石进行酸改性,并在磷酸改性的蒙脱石上负载W含量为4-16 wt%的WOx作为催化剂,用于甘油气相脱水反应. X-射线衍射(XRD)、热重-差热法(TG-DTG)、氨程序升温脱附(NH3-TPD)、红外光谱(FT-IR)和紫外漫反射可见光谱(DR UV-vis)等表征,探讨了酸改性和负载WOx的蒙脱石对催化剂催化性能的影响.
蒙脱石经过20wt%的硫酸、盐酸、磷酸和乙酸的活化,酸性增加. 四种酸改性的蒙脱石对甘油气相脱水反应均有催化活性,这是因为在蒙脱石酸活化过程中,H+经过阳离子交换反应进入蒙脱石层间,同时蒙脱石八面体中的部分Al3+被浸出,使层板上出现不饱和Al3+,为催化剂提供了L酸位,蒙脱石硅氧四面体上的Si-OH以及[AlO4]上吸附的H3O+提供了B酸位.
XRD分析表明,负载WOx的蒙脱石表面存在WO2.72,WO2.9和WO3三种不同类型的WOx,当钨负载量从12 wt%增至16 wt%,孤立的单斜晶系WO3晶粒增多. NH3-TPD和DR UV-vis结果表明,WOx负载在蒙脱石表面以[WO5/WO6](B酸位)、[WO4]和单斜晶系WO3相(L酸位)形式存在. 蒙脱石上负载WOx能够调节催化剂的酸强度、酸量和酸位. 随着钨负载量从4 wt%增至12 wt%,丙烯醛收率从40.9%增加到67.3%;进一步增加钨负载量到16 wt%,丙烯醛收率降为50.7%. 结果发现,随着钨负载量的增加,催化活性组分含量增加,[WO5/WO6](B酸位)增加,使催化活性增加;当W负载量达到16 wt%时,WOx分散性降低,且在催化剂表面形成孤立的单斜晶系WO3相(L酸位),不利于提高丙烯醛选择性. 当反应温度为320 ℃,甘油水溶液浓度为15 wt%时,磷酸活化蒙脱石负载12 wt%W的催化剂上甘油转化率为89.6%,丙烯醛收率达到73.3%.

关键词: 甘油, 丙烯醛, 脱水, WOx, 酸活化粘土, 催化剂

Abstract:

The use of H2SO4-, HCl-, H3PO4-, and CH3COOH-activated montmorillonite (Mt) and WOx/H3PO4- activated Mt as catalysts for the gas-phase dehydration of glycerol was investigated. The WOx/H3PO4-activated Mt catalysts were prepared by an impregnation method using H3PO4-activated Mt (Mt-P) as the support. The catalysts were characterized using powder X-ray diffraction, Fourier-transform infrared spectroscopy, N2 adsorption-desorption, diffuse reflectance ultraviolet-visible spectroscopy, temperature-programmed desorption of NH3, and thermogravimetric analysis. The acid activation of Mt and WOx loaded on Mt-P affected the strength and number of acid sites arising from H+ exchange, the leaching of octahedral Al3+ cations from Mt octahedral sheets, and the types of WOx (2.7 ≤ x ≤ 3) species (i.e., isolated WO4/WO6-containing clusters, two-dimensional [WO6] polytungstates, or three-dimensional WO3 crystals). The strong acid sites were weakened, and the weak and medium acid sites were strengthened when the W loading on Mt-P was 12 wt% (12%W/Mt-P). The 12%W/Mt-P catalyst showed the highest catalytic activity. It gave a glycerol conversion of 89.6% and an acrolein selectivity of 81.8% at 320 ℃. Coke deposition on the surface of the catalyst led to deactivation.

Key words: Glycerol, Acrolein, Dehydration, WOx, Acid-activated nanoclay, Catalyst