催化学报 ›› 2017, Vol. 38 ›› Issue (6): 1072-1078.DOI: 10.1016/S1872-2067(17)62850-X

• 论文 • 上一篇    下一篇

高光催化活性的磷氧桥连TiO2/g-C3N4纳米复合体的合成

刘翀a,b, Fazal Raziqa, 李志军a, 曲阳a, Amir Zadaa, 井立强a   

  1. a. 黑龙江大学功能无机材料化学重点实验室, 黑龙江哈尔滨 150080;
    b. 黑龙江科技大学环境与化工学院, 黑龙江哈尔滨 150027
  • 收稿日期:2017-03-23 修回日期:2017-04-19 出版日期:2017-06-18 发布日期:2017-06-08
  • 通讯作者: 井立强
  • 基金资助:

    国家自然科学基金项目(U1401245,91622119);教育部创新团队发展计划项目(IRT1237);教育部研究项目(213011A);哈尔滨市优秀青年基金项目(2014RFYXJ002)

Synthesis of TiO2/g-C3N4 nanocomposites with phosphate-oxygen functional bridges for improved photocatalytic activity

Chong Liua,b, Fazal Raziqa, Zhijun Lia, Yang Qua, Amir Zadaa, Liqiang Jinga   

  1. a. Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University, Harbin 150080, Heilongjiang, China;
    b. College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150027, Heilongjiang, China
  • Received:2017-03-23 Revised:2017-04-19 Online:2017-06-18 Published:2017-06-08
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (U1401245, 91622119), the Program for Innovative Research Team in Chinese Universities (IRT1237), the Research Project of Chinese Ministry of Education (213011A), and the Science Foundation for Excellent Youth of Harbin City of China (2014RFYXJ002)

摘要:

石墨型氮化碳(g-C3N4)是一种新型非金属聚合物半导体材料,具有合理的能带结构、较好的稳定性及卓越的表面性质,因而受到了人们的广泛关注. 目前,它作为光催化剂在降解污染物、光催化分解水产氢和光催化还原CO2方面正呈现出巨大的应用潜力. 然而,g-C3N4可见光响应范围窄、比表面积较小、尤其是光生载流子易复合等缺陷制约着其光催化活性的进一步提高. 针对以上问题,人们对g-C3N4进行了大量的改性研究,其中构建能级匹配的纳米半导体/g-C3N4异质结复合体是常用的有效改善g-C3N4光生电荷分离进而提高其光催化活性的手段. 但现有相关文献往往忽略了复合体界面接触情况对光生电荷转移和分离的影响,从而在一定程度上影响对光催化性能的改善. 本课题组前期工作表明,通过磷氧、硅氧功能桥的建立可加强TiO2/Fe2O3,ZnO/BiVO4纳米复合物的界面接触,从而促进光生电荷的迁移和分离,进而进一步提高纳米复合体的光催化活性. 这样,通过构建磷氧桥有望改善TiO2和g-C3N4的紧密连接,以促进光生电子由g-C3N4向TiO2的迁移、改善光生载流子的分离,进而更加显著地提高g-C3N4的光催化活性. 但是相关工作至今尚未见到报道.
为此,本文通过简单的湿化学法成功地合成了磷氧(P-O)桥连的TiO2/g-C3N4纳米复合体,并研究了P-O功能桥对TiO2/g-C3N4纳米复合体光生电荷分离及其对光催化降解污染物及还原CO2活性的影响. 结果表明,g-C3N4与适量的纳米TiO2复合,尤其是g-C3N4与适量P-O桥连TiO2的复合可进一步提高g-C3N4的光催化活性. 基于气氛调控的表面光电压谱和光致发光谱等的分析,P-O桥连可促使g-C3N4的光生电子由g-C3N4向TiO2转移,极大地促进了g-C3N4的光生电荷分离,因而使纳米复合体光催化活性大幅提高,其光催化降解2,4-DCP及还原CO2活性均为g-C3N4的3倍. 此外,自由基捕获实验表明,·OH作为空穴调控的直接中间产物,其对2,4-DCP的降解起主导作用.

关键词: TiO2/g-C3N4纳米复合体, 磷氧桥, 电荷转移及分离, 光催化, 二氧化碳转化

Abstract:

One of the most general methods to enhance the separation of photogenerated carriers for g-C3N4 is to construct a suitable heterojunctional composite, according to the principle of matching energy levels. The interface contact in the fabricated nanocomposite greatly influences the charge transfer and separation so as to determine the final photocatalytic activities. However, the role of interface contact is often neglected, and is rarely reported to date. Hence, it is possible to further enhance the photocatalytic activity of g-C3N4-based nanocomposite by improving the interfacial connection. Herein, phosphate-oxygen (P-O) bridged TiO2/g-C3N4 nanocomposites were successfully synthesized using a simple wet chemical method, and the effects of the P-O functional bridges on the photogenerated charge separation and photocatalytic activity for pollutant degradation and CO2 reduction were investigated. The photocatalytic activity of g-C3N4 was greatly improved upon coupling with an appropriate amount of nanocrystalline TiO2, especially with P-O bridged TiO2. Atmosphere-controlled steady-state surface photovoltage spectroscopy and photoluminescence spectroscopy analyses revealed clearly the enhancement of photogenerated charge separation of g-C3N4 upon coupling with the P-O bridged TiO2, resulting from the built P-O bridges between TiO2 and g-C3N4 so as to promote effective transfer of excited electrons from g-C3N4 to TiO2. This enhancement was responsible for the improved photoactivity of the P-O bridged TiO2/g-C3N4 nanocomposite, which exhibited three-time photocatalytic activity enhancement for 2,4-dichlorophenol degradation and CO2 reduction compared with bare g-C3N4. Furthermore, radical-trapping experiments revealed that the ·OH species formed as hole-modulated direct intermediates dominated the photocatalytic degradation of 2,4-dichlorophenol. This work provides a feasible strategy for the design and synthesis of high-performance g-C3N4-based nanocomposite photocatalysts for pollutant degradation and CO2 reduction.

Key words: TiO2/graphitic carbon nitride nanocomposite, Phosphate-oxygen bridge, Charge transfer and separation, Photocatalysis, Carbon dioxide conversion