催化学报 ›› 2018, Vol. 39 ›› Issue (4): 654-663.DOI: 10.1016/S1872-2067(17)62927-9

• 论文 • 上一篇    下一篇

新型BiOI/g-C3N4纳米片复合光催化剂的制备及其可见光催化活性增强

安华a, 林波a, 薛超a, 严孝清a, 代艳竹b, 魏进家a, 杨贵东a   

  1. a 西安交通大学化学工程与技术学院, 西安交通大学-牛津大学催化国际联合实验室, 陕西西安 710049;
    b 西安交通大学电子与信息工程学院, 电子陶瓷与器件教育部重点实验室, 陕西西安 710049
  • 收稿日期:2017-10-30 修回日期:2017-12-09 出版日期:2018-04-18 发布日期:2018-04-08
  • 通讯作者: 杨贵东
  • 基金资助:

    陕西省自然科学基础研究计划(2017JZ001);国家自然科学基金(21303130);重质油国家重点实验室开放基金(SKLOP201602001);中央高校基本科研业务费(西安交通大学创新团队培育项目,cxtd2017004).

Formation of BiOI/g-C3N4 nanosheet composites with high visible-light-driven photocatalytic activity

Hua Ana, Bo Lina, Chao Xuea, Xiaoqing Yana, Yanzhu Daib, JinJia Weia, Guidong Yanga   

  1. a XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China;
    b Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2017-10-30 Revised:2017-12-09 Online:2018-04-18 Published:2018-04-08
  • Contact: 10.1016/S1872-2067(17)62927-9
  • Supported by:

    This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2017JZ001), the National Natural Science Foundation of China (21303130), State Key Laboratory of Heavy Oil Processing (SKLOP201602001), and the Fundamental Research Funds for the Central Universities (cxtd2017004). Thanks for the technical support from International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China; the authors also appreciate Ms. Dai and Mr. Ma for their help in using SEM, EDX and TEM, respectively.

摘要:

近年来,石墨型氮化碳(g-C3N4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C3N4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C3N4材料进行改性,其中构建基于g-C3N4纳米薄片的异质结复合光催化材料被认为是强化g-C3N4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C3N4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C3N4纳米片复合光催化剂材料不仅能够有效提高g-C3N4的可见光利用率,而且还可以在n型g-C3N4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.
为此,本文通过简单的一步溶剂热法在g-C3N4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C3N4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C3N4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C3N4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C3N4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C3N4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O2-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C3N4与BiOI界面处形成的内建电场协同促进了g-C3N4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C3N4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.

关键词: g-C3N4, BiOI, 纳米片, 光降解, 双向转移, 可见光

Abstract:

Constructing binary heterojunctions is an important strategy to improve the photocatalytic performance of graphitic carbon nitride (g-C3N4). In this paper, a novel g-C3N4 nanosheet-based composite was constructed via in situ growth of bismuth oxyiodide (BiOI) nanoplates on the surface of g-C3N4 nanosheets. The crystal phase, microstructure, optical absorption and textural properties of the synthesized photocatalysts were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS), and nitrogen adsorption-desorption isotherm measurements. The BiOI/g-C3N4 nanosheet composite showed high activity and recyclability for the photodegradation of the target pollutant rhodamine B (RhB). The conversion of RhB (20 mg L-1) by the photocatalyst was nearly 100% after 50 min under visible-light irradiation. The high photoactivity of the BiOI/g-C3N4 nanosheet composite can be attributed to the enhanced visible-light absorption of the g-C3N4 nanosheets sensitized by BiOI nanoplates as well as the high charge separation efficiency obtained by the establishment of an internal electric field between the n-type g-C3N4 and p-type BiOI. Based on the characterization and experimental results, a double-transfer mechanism of the photoinduced electrons in the BiOI/g-C3N4 nanosheet composite was proposed to explain its activity. This work represents a new strategy to understand and realize the design and synthesis of g-C3N4 nanosheet-based heterojunctions that display highly efficient charge separation and transfer.

Key words: g-C3N4, BiOI, Nanosheet, Photodegradation, Double-transfer mechanism, Visible light