催化学报 ›› 2017, Vol. 38 ›› Issue (12): 1956-1969.DOI: 10.1016/S1872-2067(17)62955-3

• 综述 • 上一篇    下一篇

多孔材料的二氧化碳吸附与光催化转化研究进展

马亚娟, 王泽美, 徐晓峰, 王靖宇   

  1. 华中科技大学化学化工学院, 能量转换与存储材料化学教育部重点实验室, 湖北武汉 430074
  • 收稿日期:2017-10-11 修回日期:2017-10-31 出版日期:2017-12-18 发布日期:2017-12-29
  • 通讯作者: 王靖宇
  • 基金资助:

    国家自然科学基金(21771070,21571071).

Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2

Yajuan Ma, Zemei Wang, Xiaofeng Xu, Jingyu Wang   

  1. Key Laboratory of Material Chemistry for Energy Conversion and Storage(Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2017-10-11 Revised:2017-10-31 Online:2017-12-18 Published:2017-12-29
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21771070, 21571071).

摘要:

太阳能光催化是CO2转化和利用的新兴技术,直接利用洁净充足的太阳能将自然界富有的"温室气体"CO2转化成化学燃料,不仅有利于消除大气温室效应,而且能缓解能源短缺问题,因而成为人们研究的一个重要方向.但目前CO2的吸附和转换效率还很低,这是太阳能光催化CO2资源化的最大障碍.高性能光催化剂的设计和合成是这项技术的关键.针对CO2光还原反应的特异性,理想的光催化材料应该具有以下功能:强的CO2吸附能力和高的光催化活性.将光催化剂与对CO2具有高吸附性的多孔材料结合,就可以将CO2吸附并富集在吸附剂周围的光催化剂表面上以进行催化转化,因此基于高效多孔吸附材料构筑光催化体系成为光催化转化CO2的重要研究方向之一.
CO2的循环利用包括吸附和转化两方面,高吸附量的多孔材料是获得CO2高转化效率的前提.本文首先以多孔材料结构参数及性能指标为主线,对无机多孔材料、金属有机框架材料及微孔有机聚合物材料的研究进展及应用前景进行了评述.通过对多孔材料的改性和新型多孔材料的开发,CO2的吸附能力得到一定的提升,但是仅仅依靠多孔材料的吸附分离,不能实现CO2中的碳资源循环.在此基础上,本文重点评述了多孔光催化材料在CO2光催化转化中的最新研究进展.采用多孔材料与光催化剂结合,可增加材料的比表面积,在界面处暴露更多的活性位点,有利于光催化CO2转化的进行;同时,通过孔结构和基团调控,可以调控光催化剂的反应活性和产物选择性.特别是金属有机框架材料与微孔有机聚合物材料,改变构建单元的官能团和制备技术还可以实现光谱响应范围的调控,提高太阳光的利用率.大量文献对比发现,引入较高CO2吸附效率的多孔材料构建光催化体系,CO2光催化转化的效率及产物选择性显著提高.
最后,本文对多孔材料在CO2光催化转化领域的研究现状与亟待解决的问题进行了剖析,提出了下一步可能的研究方向:(1)提高多孔材料自身的稳定性如耐水性能与光/热稳定性;(2)发展光催化材料在多孔载体的微观组装方法,不影响CO2吸附效率的前提下提高光催化活性;(3)深入研究多孔光催化材料内部与表面的CO2转化机理,为进一步提高吸附与转化效率提供理论指导.

关键词: 多孔材料, 纳米复合材料, 二氧化碳吸附, 光催化, 二氧化碳转化

Abstract:

Photocatalytic conversion of "greenhouse gas" CO2 is considered to be one of the most effective ways to alleviate current energy and environmental problems without additional energy consumption and pollutant emission. The performance of many traditional semiconductor photocatalysts is not efficient enough to satisfy the requirements of practical applications because of their limited specific surface area and low CO2 adsorption capacity. Therefore, the exploration of photocatalysts with high CO2 uptake is significant in the field of CO2 conversion. Recently the porous materials appeared to be a kind of superior candidate for enriching the CO2 molecules on the surface of photocatalysts for catalytic conversion. This paper first summarizes the advances in the development of nanoporous adsorbents for CO2 capture. Three main classes of porous materials are considered:inorganic porous materials, metal organic frameworks, and microporous organic polymers. Based on systematic research on CO2 uptake, we then highlight the recent progress in these porous-material-based photocatalysts for CO2 conversion. Benefiting from the improved CO2 uptake capacity, the porous-material-based photocatalysts exhibited remarkably enhanced efficiency in the reduction of CO2 to chemical fuels, such as CO, CH4, and CH3OH. Based on reported recent achievements, we predict a trend of development in multifunctional materials with both high adsorption capability and photocatalytic performance for CO2 utilization.

Key words: Porous material, Composite nanostructure, CO2 adsorption, Photocatalysis, CO2 conversion