催化学报 ›› 2018, Vol. 39 ›› Issue (3): 502-509.DOI: 10.1016/S1872-2067(17)62943-7

• 论文 • 上一篇    下一篇

二氰胺钴、镍调控钒酸铋界面载流子传输及光催化产氧研究

尚义, 牛富军, 沈少华   

  1. 西安交通大学动力工程多相流国家重点实验室国际可再生能源研究中心, 陕西西安 710049
  • 收稿日期:2017-09-25 修回日期:2017-10-29 出版日期:2018-03-18 发布日期:2018-03-10
  • 通讯作者: 沈少华
  • 基金资助:

    国家自然科学基金(51672210,51323011,51236007).

Photocatalytic water oxidation over BiVO4 with interface energetics engineered by Co and Ni-metallated dicyanamides

Yi Shang, Fujun Niu, Shaohua Shen   

  1. International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2017-09-25 Revised:2017-10-29 Online:2018-03-18 Published:2018-03-10
  • Contact: 10.1016/S1872-2067(17)62943-7
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (51672210, 51323011, 51236007).

摘要:

光催化水分解反应是解决当前世界范围严峻的能源与环境问题的一种有效途径.光催化分解水过程可以分为产氢和产氧两个半反应.产氧反应过程复杂,动力学缓慢,是光催化分解水的限速步骤,因此需要探索性能优异的水氧化催化剂(WOCs)来提高产氧半反应的效率.钒酸铋近年来被广泛研究并应用于光催化产氧领域.钒酸铋拥有合适的带宽(2.4eV)以及较好的稳定性,但是其应用受到其严重的电子空穴复合率、较低的电荷传输能力以及较差的反应动力学的限制.以往研究表明,通过构建复合光催化体系可以有效促进光生电荷的分离与传输,提高材料的光催化性能.因此,我们提出构建新型的BiVO4/M(dca)2(M=Co,Ni)复合体系,其中,BiVO4作为光敏化剂,M(dca)2作为水氧化催化剂.
红外测试和紫外可见测试的结果表明,M(dca)2通过物理吸附的方式附着在BiVO4表面,形成BiVO4/M(dca)2复合光催化剂体系.复合体系的产氧活性相较于纯BiVO4有明显的提升.光催化产氧测试结果表明,BiVO4/Co(dca)2和BiVO4/Ni(dca)2复合体系的产氧活性分别可达508.1和297.7μmol/(h·g),而纯BiVO4的产氧活性只有252.2μmol/(h·g).进一步的稳定性测试结果表明,BiVO4/Co(dca)2复合体系在30h的测试过程中能够保持稳定的活性.ICP-MS和XPS的表征结果证明了催化过程中分子催化剂良好的稳定性,排除了反应过程中生成氧化物进而促进产氧活性的可能.对该复合体系的一系列电化学表征证明,M(dca)2有效改善了BiVO4/电解液界面的电荷传输性能,从而促进了光催化产氧性能.其中,莫特-肖特基测试表明,M(dca)2的加入增大了能带弯曲,提高了空穴传递的驱动力,阻抗谱的测试证明了复合体系具有较低的界面电阻,有利于载流子的迁移.
通过对复合体系光生载流子分离和注入效率的表征,可以证明,在BiVO4/M(dca)2复合体系中,光生空穴能够有效地从BiVO4迁移到M(dca)2,进而参与光催化产氧反应并且光催化活性有明显的提升.其中,由于Co(dca)2能够更加有效地改善BiVO4/电解质的水氧化反应动力学过程,其活性显著优于BiVO4/Ni(dca)2体系和纯BiVO4.此外,基于实验结果和各项表征,我们进一步提出了BiVO4/Co(dca)2光催化产氧反应的反应机理:光照条件下,BiVO4中电子跃迁至导带,进而被牺牲剂消耗,而价带上的空穴则传递至分子催化剂进行化学反应,其中,分子催化的反应机理遵循水亲核攻击的模型.

关键词: 金属复合物, 钒酸铋, 水氧化, 光催化, 界面动力学

Abstract:

Photocatalytic water oxidation based on semiconductors usually suffers from poor charge transfer from the bulk to the interface, which is necessary for oxygen generation. Here, we construct a hybrid artificial photosynthesis system for photocatalytic water oxidation. The system consists of BiVO4 as the light harvester, a transitional metal complex (M(dca)2, M=Co, Ni, dca:dicyanamide) as the water oxidation catalyst, and S2O82- as a sacrificial electron acceptor. The system exhibits enhanced oxygen evolution activity when M(dca)2 is introduced. The BiVO4/Co(dca)2 and BiVO4/Ni(dca)2 systems exhibit excellent oxygen evolution rates of 508.1 and 297.7 μmol/(h·g) compared to the pure BiVO4 which shows a photocatalytic oxygen evolution rate of 252.2 μmol/(h·g) during 6 h of photocatalytic reaction. Co(dca)2 is found to be more effective than Ni(dca)2 as a water oxidation catalyst. The enhanced photocatalytic performance is ascribed to the M(dca)2-engineered BiVO4/electrolyte interface energetics, and to the M(dca)2-catalyzed surface water oxidation. These two factors lead to a decrease in the energy barrier for hole transfer from the bulk to the surface of BiVO4, which promotes the water oxidation kinetics.

Key words: Metal complex, BiVO4, Water oxidation, Photocatalysis, Interfacial kinetics