催化学报 ›› 2018, Vol. 39 ›› Issue (2): 207-227.DOI: 10.1016/S1872-2067(18)63017-7

• 综述 • 上一篇    下一篇

高效氧催化反应中的金属有机骨架材料

何小波a,b,e, 银凤翔a,b,c,d,e, 王昊a,c, 陈标华c, 李国儒a,b,e   

  1. a 北京化工大学有机无机复合材料国家重点实验室, 北京 100029;
    b 常州大学, 江苏省先进催化与绿色制造协同创新中心, 江苏常州 213164;
    c 北京化工大学化学工程学院, 北京 100029;
    d 能源环境催化北京市重点实验室, 北京 100029;
    e 北京化工大学常州先进材料研究院, 江苏常州 213164
  • 收稿日期:2017-10-30 修回日期:2017-12-26 出版日期:2018-02-18 发布日期:2018-02-10
  • 通讯作者: 银凤翔
  • 基金资助:

    国家自然科学基金(21706010);江苏省基础研究计划(自然科学基金)(BK20161200);中央高校基本科研业务费项目(buctrc201526,PYCC1706);常州市科技项目(CJ20160007);常州大学江苏省先进催化与绿色制造协同创新中心创新型人才支持项目(ACGM2016-06-02,ACGM2016-06-03).

Metal-organic frameworks for highly efficient oxygen electrocatalysis

Xiaobo Hea,b,e, Fengxiang Yina,b,c,d,e, Hao Wanga,c, Biaohua Chenc, Guoru Lia,b,e   

  1. a State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;
    b Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu, China;
    c College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
    d Beijing Key Laboratory of Energy Environmental Catalysis, Beijing 100029, China;
    e Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, Jiangsu, China
  • Received:2017-10-30 Revised:2017-12-26 Online:2018-02-18 Published:2018-02-10
  • Contact: 10.1016/S1872-2067(18)63017-7
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21706010), the Natural Science Foundation of Jiangsu Province of China (BK20161200), the Fundamental Research Funds for the Central Universities (buctrc201526 and PYCC1706), the Changzhou Sci & Tech Program (CJ20160007), the support from Advanced Catalysis and Green Manufacturing Collaborative Innovation Center and Changzhou University (ACGM2016-06-02 and ACGM2016-06-03).

摘要:

氧电催化反应包括氧气还原反应(ORR)和氧气析出反应(OER).作为核心电极反应,这两个反应对诸多能源存储与转换技术(比如燃料电池、金属空气电池以及全水分解制氢等)的能量效率起决定性作用.然而,ORR和OER涉及多个反应步骤、多个电子转移过程以及多相界面传质过程.这些复杂的过程较大程度上限制了ORR和OER的反应速率.从理论和实践两个方面来看,ORR和OER都需要高效电催化剂的参与来促进其反应速率,从而能够最终提高上述能源存储与转换技术的能量转换或利用效率.
目前,以Pt,Pd,Ir,Ru为代表的贵金属基电催化剂具有十分突出的电催化性能.但是,过高的成本和过低的储量始终制约着贵金属基电催化剂在催化ORR和OER反应方面,乃至在能源存储与转换技术领域的规模化应用.因而,开发高效非贵金属基氧电催化剂成为近年来能源存储与转换领域的研究重点之一.在众多已经报道的非贵金属基氧电催化剂中,金属有机骨架材料(MOFs)备受瞩目.MOFs是一类由有机配体和金属节点通过配位键自组装而成的晶态多孔材料.它们具备超高比表面积、超高孔隙率以及规则性纳米孔道.相比较其他传统的多孔材料(比如活性炭、分子筛、介孔炭、介孔氧化硅等),MOFs最主要的优势在于它们的结构和功能可以依据需求通过选择合适的有机配体和金属节点进行便利地设计,或通过后处理进行必要的改性和调节.基于独特的多孔特性以及结构与功能的可设计、可调节性,MOFs在气体分离与存储、异相催化、化学传感、药物输送、环境保护以及能源存储与转化等领域都具有潜在的应用价值.因而,近年来,MOFs备受基础研究领域和工业界的青睐.针对MOFs开展的基础研究和应用开发逐渐成为诸多领域的研究焦点.也正由于MOFs具有的上述优异特性,尤其是结构与功能的可设计、可调节性,使得设计制备基于单纯MOFs以及MOFs衍生材料成为开发高效非贵金属基氧电催化剂的新途径.
本综述首先论述了基于单纯MOFs的氧电催化剂(包括纯MOFs、活性物种修饰的MOFs以及与导电材料构成的复合MOFs)的合成以及它们在ORR或OER催化反应中应用的研究进展.在第二部分论述中,本综述主要针对MOFs衍生的各类氧电催化剂(包括无机微米-纳米结构/多孔碳复合材料、纯多孔碳材料、纯无机微米-纳米结构材料以及单原子型电催化材料)的研究进展进行了简要介绍和讨论.最后,本综述对MOFs基氧电催化剂目前存在的挑战进行了简要分析;同时,也对这类氧电催化剂的通用设计准则以及未来发展方向进行了展望.尽管存在诸多挑战,MOFs始终被认为是极好的"平台"材料.充分利用它们将有利于开发高效且实用的非贵金属基氧电催化剂.

关键词: 金属有机骨架材料, 多孔材料, 电催化, 氧气还原反应, 氧气析出反应, 能源存储与转换

Abstract:

Metal-organic frameworks (MOFs) are a series of highly porous crystalline materials, which are built from inorganic metal nodes and organic linkers through coordination bonds. Their unique porous structural features (such as high porosity, high surface areas, and highly ordered nanoporous structures) and designable structures and compositions have facilitated their use in gas capture, separation, catalysis, and energy storage and conversion. Recently, the design and synthesis of pure MOFs and their derivatives have opened new routes to develop highly efficient electrocatalysts toward oxygen reduction reactions (ORR) and oxygen evolution reactions (OER), which are the core electrode reactions in many energy storage and conversion techniques, such as metal-air batteries and fuel cells. This review first discusses recent progress in the synthesis and the electrocatalytic applications of pure MOF-based electrocatalysts toward ORR or OER, including pure MOFs, MOFs decorated with active species, and MOFs incorporated with conductive materials. The following section focuses on the advancements of the design and preparation of various MOF-derived materials-such as inorganic nano-(or micro-) structures/porous carbon composites, pure porous carbons, pure inorganic nano-(or micro-) structured materials, and single-atom electrocatalysts-and their applications in oxygen electrocatalysis. Finally, we present a conclusion and an outlook for some general design strategies and future research directions of MOF-based oxygen electrocatalysts.

Key words: Metal-organic frameworks, Porous materials, Electrocatalysis, Oxygen reduction reaction, Oxygen evolution reaction, Energy storage and conversion