催化学报 ›› 2018, Vol. 39 ›› Issue (7): 1228-1239.DOI: 10.1016/S1872-2067(18)63055-4

• 论文 • 上一篇    下一篇

调控尖晶石Co3+和Ni3+表面密度来提高催化甲烷氧化活性

张泽树a,b,c, 李经纬a,b, 易婷a,b,d, 孙立伟a,b,c, 张一波a,b, 胡学风a,b,c, 崔文浩d, 杨向光a,b   

  1. a 中国科学院长春应用化学研究所, 稀土资源与利用国家重点实验室, 吉林长春 130022;
    b 中国科学院长春应用化学研究所, 吉林省绿色化学与过程重点实验室, 吉林长春 130022;
    c 中国科学技术大学, 安徽合肥 230026;
    d 中国科学院大学, 北京 100049
  • 收稿日期:2018-01-08 修回日期:2018-02-10 出版日期:2018-07-18 发布日期:2018-06-07
  • 通讯作者: 张一波, 杨向光
  • 基金资助:

    国家重点研究计划项目(2016YFC0204301).

Surface density of synthetically tuned spinel oxides of Co3+ and Ni3+ with enhanced catalytic activity for methane oxidation

Zeshu Zhanga,b,c, Jingwei Lia,b, Ting Yia,b,d, Liwei Suna,b,c, Yibo Zhanga,b, Xuefeng Hua,b,c, Wenhao Cuid, Xiangguang Yanga,b   

  1. a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China;
    b Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China;
    c University of Science and Technology of China, Hefei 230026, Anhui, China;
    d University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-01-08 Revised:2018-02-10 Online:2018-07-18 Published:2018-06-07
  • Contact: 10.1016/S1872-2067(18)63055-4
  • Supported by:

    This work was supported by the National Key Research and Development Program of China (2016YFC0204301).

摘要:

天然气资源丰富、价格低廉,因而被广泛用作燃料.天然气的主要成分是甲烷,未燃烧完的甲烷所产生的温室效应是二氧化碳的21倍,所带来的环境问题引起越来越多的研究者关注.但甲烷是最稳定的非极性有机小分子,C-H键能高达434kJ/mol,大多数催化剂很难将其在很低的温度在完全转化.C-H键的活化解离是催化甲烷燃烧最关键的一步,而活化C-H键方式主要有两大类:(1)均裂活化机制,一般用在贵金属催化剂上;(2)异裂活化机制,往往发生在过渡金属氧化物上.比较而言,贵金属催化剂,尤其是Pd,往往具有更优异的低温催化活性,但价格昂贵,从而限制了其广泛使用.因此,开发更加高效的非贵金属催化剂用于废气中未转化的甲烷完全氧化是亟待解决的问题.
含有Co和Ni的尖晶石氧化物具有良好的催化甲烷燃烧活性,有望代替贵金属催化剂,但要求在低于400℃完全转化,仍具有一定挑战.另一方面,Ni3+和Co3+哪个是活性中心,还具有一定争议.因此,我们通过水热法和共沉淀法合成一系列表面暴露不同数目的Ni3+和Co3+来探究表面高氧化态Co和Ni跟活性之间的关系.
XRD和TEM结果表明,相比于水热法合成的Co3O4,水热法合成的NiCo2O4发生明显的晶格收缩现象,这是由于在尖晶石体相中大量小半径Ni3+(0.053nm)取代了大半径Co3+(0.055nm)所致.同时还发现,水热合成的尖晶石具有多孔纳米片层结构,相比于共沉淀法合成的尖晶石具有更大的比表面积,催化活性也更高.XPS分析发现,催化甲烷燃烧的活性随着表面(Ni3++Co3+)含量增加而提高.结合文献分析和本文的实验结果推测,表面的Ni3+和Co3+都可作为解离C-H键的活性中心.水热60小时合成的NiCo2O4纳米片表面Ni3++Co3+的数量最多,所以具有最优异的催化性能,大约在280℃甲烷转化50%.当加入10%(体积比)的水,在高空速工况下对催化活性影响不大,主要是因为长时间水热合成的尖晶石表面缺陷少,对水的吸附弱,这可通过O 1s图谱得到印证.总之,这些研究结果能够给甲烷活化和开发更加高效和低成本催化剂一些启示.

关键词: 尖晶石氧化物, 催化甲烷燃烧, 多孔纳米片, 活性中心, 水热稳定性

Abstract:

Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion. Achieving a complete oxidation of methane under 400℃ remains challenging, and whether Ni3+ or Co3+ is the active center for the catalytic combustion of methane is a controversial issue. Therefore, we designed a series of spinel oxide catalysts by exposing different amounts of Ni3+ and Co3+ deposited on the surface by hydrothermal and co-precipitation methods in order to study the influence of high oxidation state (Ni3+ and Co3+) on surface and catalytic activity. The catalytic performance increased almost linearly with increasing Ni3+ + Co3+ on the surface of the catalyst. Thus, we are convinced that Ni3+ and Co3+ both act as active centers. The amount of Ni3+ + Co3+ on a hydrothermal 60 h NiCo2O4 nanosheet surface is the highest, and reveals the best catalytic performance with T50 (50% methane conversion) at about 280℃. 10 vol% H2O added to the system has little impact on activity, especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects. Overall, these results help clarify methane activation mechanisms and aid the development of more efficient low-cost catalysts.

Key words: Spinel oxides, Catalytic combustion of methane, Porous nanosheets, Active center, Hydrothermal stability