催化学报 ›› 2018, Vol. 39 ›› Issue (5): 908-913.DOI: 10.1016/S1872-2067(18)63060-8

• 观点 • 上一篇    下一篇

氮化硼催化低碳烷烃氧化脱氢的活性起源探讨

石磊a, 王东琪b, 陆安慧a   

  1. a 大连理工大学化工学院精细化工国家重点实验室, 辽宁大连 116024;
    b 中国科学院高能物理研究所, 北京 100049
  • 收稿日期:2018-01-26 修回日期:2018-02-22 出版日期:2018-05-18 发布日期:2018-04-19
  • 通讯作者: 陆安慧
  • 基金资助:

    国家自然科学基金重点项目(21733002);国家自然科学基金(U1462120,21403027);长江学者奖励计划(T2015036)

A viewpoint on catalytic origin of boron nitride in oxidative dehydrogenation of light alkanes

Lei Shia, Dongqi Wangb, Anhui Lua   

  1. a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
    b Center for Multi-disciplinary Research, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-01-26 Revised:2018-02-22 Online:2018-05-18 Published:2018-04-19
  • Contact: 10.1016/S1872-2067(18)63060-8
  • Supported by:

    This work was supported by State Key Program of the National Natural Science Foundation of China (21733002), the National Natural Science Foundation of China (U1462120, 21403027), and Cheung Kong Scholars Programme of China (T2015036).

摘要:

页岩气的急速开采推动了以天然气替代石油的资源革命.除主组分甲烷外,天然气、页岩气中还包含大量乙烷、丙烷等低碳烷烃资源,将这些储量丰富的碳资源直接转化为烯烃等基础化学品有望革新以原油为基础的化学工业.现有烷烃催化脱氢制烯烃工艺中,直接脱氢过程吸热、热力学受限,且存在催化剂迅速失活的难题;而氧化脱氢是放热过程、无平衡限制,也无积碳等引发催化剂失活的问题,有利于提高反应效率、降低能耗,代表了更为高效和经济的新路线.但作为一个热力学爬坡过程,目前金属氧化物催化剂上烯烃产物很容易深度氧化到CO2,选择性仍有待提高.非金属氮化硼能够有效活化低碳烷烃中的C-H键,促进烷烃氧化脱氢,并能够有效抑制深度氧化产物的生成,解决低碳烷烃临氧脱氢过程中产物易深度氧化的固有难题.本文综述了近期氮化硼在乙烷、丙烷、丁烷等低碳烷烃氧化脱氢制烯烃反应中的研究进展.以丙烷氧化脱氢为例,通过比较文献报道的几种氮化硼材料的氧化脱氢性能,发现羟基化氮化硼显示了最高的烯烃选择性和时空收率,以20.6%的丙烷转化率为基准,烯烃选择性超过90%,而时空收率可达6.8golefin gcat-1 h-1.在此基础上,本文重点讨论了对于氮化硼材料催化活性起源的认识.主要实验事实和结论包括:氮化硼自身几乎没有氧化脱氢活性,而在烷烃氧化脱氢反应条件下存在活性诱导期;活性诱导期伴随着氮化硼边沿氧官能团化过程;氮化硼边沿B-O官能团没有脱氢活性,而B-OH官能团参与了氧化脱氢过程,辅助分子氧引发低碳烷烃脱氢反应;分子氧在羟基氮化硼边沿解离活化,反应过程中与边沿结构氧存在动态交换;氮化硼边沿羟基化定向合成过程可显著增强氧化脱氢反应活性.氮化硼作为一类新型烷烃氧化脱氢催化剂,目前正处于研究的初始阶段.因此,本文最后总结了一些关于氮化硼烷烃脱氢催化体系仍需深入研究的科学问题.

关键词: 氮化硼, zig-zag边, 硼羟基, 低碳烷烃, 氧化脱氢, 诱导期

Abstract:

Oxidative dehydrogenation of light alkanes to alkenes is an attractive alternative route for industrial direct dehydrogenation because of favorable thermodynamic and kinetic characteristics, but encounters difficulties in selectivity control for alkenes because of over-oxidation reactions that produce a substantial amount of undesired carbon oxides. Recent progress has revealed that boron nitride is a highly promising catalyst in the oxidative dehydrogenation of light alkanes because of its superior selectivity for and high productivity of light alkenes, negligible formation of CO2, and remarkable catalyst stability. From this viewpoint, recent works on boron nitride in the oxidative dehydrogenations of ethane, propane, butane, and ethylbenzene are reviewed, and the emphasis of this viewpoint is placed on discussing the catalytic origin of boron nitride in oxidative dehydrogenation reactions. After analyzing recent progress in the use of boron nitride for oxidative dehydrogenation reactions and finding much new evidence, we conclude that pure boron nitride is catalytically inert, and an activation period is required under the reaction conditions; this process is accompanied by an oxygen functionalization at the edge of boron nitride; the B-O species themselves have no catalytic activity in C-H cleavage, and the B-OH groups, with the assistance of molecular oxygen, play the key role in triggering the oxidative dehydrogenation of propane; the dissociative adsorption of molecular oxygen is involved in the reaction process; and a straightforward strategy for preparing an active boron nitride catalyst with hydroxyl groups at the edges can efficiently enhance the catalytic efficacy. A new redox reaction cycle based on the B-OH sites is also proposed. Furthermore, as this is a novel catalytic system, there is an urgent need to develop new methods to optimize the catalytic performances, clarify the catalytic function of boron species in the alkane ODH reactions, and disclose the reaction mechanism under realistic reaction conditions.

Key words: Boron nitride, Zig-zag edge, B-OH group, Light alkanes, Oxidative dehydrogenation, Induction period