催化学报 ›› 2018, Vol. 39 ›› Issue (4): 779-789.DOI: 10.1016/S1872-2067(18)63056-6

• 论文 • 上一篇    下一篇

通过可控的氧空位增强BiOBr纳米片可见光催化NO氧化性能

廖佳珍a,b, 陈侣存b, 孙明禄b, 雷奔b, 曾晓岚a, 孙艳娟b, 董帆b   

  1. a 重庆大学城市建设与环境工程学院, 重庆 400044;
    b 重庆工商大学环境与资源学院, 重庆市催化与功能有机分子重点实验室, 重庆 400067
  • 收稿日期:2018-02-23 修回日期:2018-03-25 出版日期:2018-04-18 发布日期:2018-04-08
  • 通讯作者: 曾晓岚, 孙艳娟
  • 基金资助:

    国家自然科学基金(21501016,21777011,51478070);国家重点研发计划(2016YFC02047);重庆市高校创新团队(CXTDG201602014,CXTDX201601016).重庆市重点自然科学基金(cstc2017jcyjBX0052).

Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies

Jiazhen Liaoa,b, Lvcun Chenb, Minglu Sunb, Ben Leib, Xiaolan Zenga, Yanjuan Sunb, Fan Dongb   

  1. a College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China;
    b Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
  • Received:2018-02-23 Revised:2018-03-25 Online:2018-04-18 Published:2018-04-08
  • Contact: 10.1016/S1872-2067(18)63056-6
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21501016, 21777011, 51478070), the National Key R&D Plan (2016YFC02047), the Innovative Research Team of Chongqing (CXTDG201602014, CXTDX201601016), and the Key Natural Science Foundation of Chongqing (cstc2017jcyjBX0052).

摘要:

BiOBr具有独特的层状纳米结构和合适的可调节的能带结构,因而广泛应用于光催化领域中.但其可见光催化效率仍需要进一步提高.最近,氧空位调控技术广泛应用于光催化剂改性中.本文研采用溶剂热法(采用水/乙二醇溶液)合成了一系列具有氧空位的BiOBr纳米片.通过改变水/乙二醇的比例调节BiOBr氧空位的量和晶面,以增强其可见光催化活性.虽然有关氧空位在光催化中的作用已有研究,但氧空位对电荷转移和反应物活化影响的机理仍不清楚.因此,本文采用X射线衍射、扫描电镜、透射电镜、荧光光谱(PL)、紫外-可见漫反射光谱(UV-Vis DRS)、电子自旋共振(ESR)、电子顺磁共振(EPR)和比表面积-孔结构(BET-BJH)分析等手段考察了含有氧空位的BiOBr纳米片的物理化学性质,通过原位红外光谱研究了样品可见光催化氧化NO的转化路径及反应机理.同时结合密度泛函理论(DFT)计算进一步揭示氧空位对电子激发、电子-空穴分离和转移、以及光催化氧化反应过程的影响.
表征结果表明,采用水/乙二醇混合溶液的方法制得了BiOBr样品(BOB,BOB-1C,BOB-2C,和BOB-3C),其表面氧空位随着混合溶液中乙二醇溶液的增加而增加.另外,BiOBr样品均呈纳米片层状,且随着乙二醇溶液的增加,BiOBr纳米片逐渐组装成紧密结合的球状结构.BET-BJH测试结果显示,BOB-3C的比表面积(15.34m2/g)显著高于BOB(1.1m2/g).UV-Vis DRS结果表明,BOB-3C具有比BOB更良好的可见光吸收能力.可见光催化去除NO的测试结果表明,BOB-3C的光催化活性(38.9%)明显高于BOB(4.1%).ESR研究发现,BOB-3C能产生比BOB更多的活性氧化物种(·O-自由基和·OH自由基).由此可见,因表面氧空位浓度的变化,而使BOB和BOB-3C表现出不同的理化特性.同时DFT计算也印证了光催化过程中氧空位对氧气吸附活化、NO吸附氧化和能带结构的影响.可见光催化氧化NO的原位红外光谱表明,BOB-3C与BOB相比,光催化氧化NO的转化路径发生了变化,表明氧空位对NO氧化起到了促进作用.
氧空位在光催化中表现出多功能性,包括引入中间能级以增强光吸收,促进电子转移,充当催化反应和氧分子活化的活性位点,促进反应产物转化为最终产物,从而增强样品可见光光催化效率.为揭示氧空位在光催化剂中的作用和光催化NO氧化机理提供了新的思路.

关键词: BiOBr纳米片, 氧空位, 原位红外, 转化路径, NO氧化

Abstract:

In this work, a series of BiOBr nanoplates with oxygen vacancies (OVs) were synthesized by a solvothermal method using a water/ethylene glycol solution. The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio. Although the role of OVs in photocatalysis has been investigated, the underlying mechanisms of charge transfer and reactant activation remain unknown. To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process, in situ diffuse reflectance infrared Fourier transform spectroscopy, so-called DRIFTS, and theoretical calculations were performed and their results combined. The photocatalytic efficiency of the as-prepared BiOBr was significantly increased by increasing the amount of OVs. The oxygen vacancies had several effects on the photocatalysts, including the introduction of intermediate energy levels that enhanced light absorption, promoted electron transfer, acted as active sites for catalytic reaction and the activation of oxygen molecules, and facilitated the conversion of the intermediate products to the final product, thus increasing the overall visible light photocatalysis efficiency. The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation.

Key words: BiOBr nanoplate, Oxygen vacancies, In situ diffuse reflectance infrared Fourier transform spectroscopy, Conversion pathway, NO oxidation