催化学报 ›› 2018, Vol. 39 ›› Issue (9): 1493-1499.DOI: 10.1016/S1872-2067(18)63081-5

• 论文 • 上一篇    下一篇

密度泛函理论计算研究表面应力对钯催化乙炔选择性加氢活性与选择性的影响

王萍, 杨波   

  1. 上海科技大学物质科学与技术学院, 上海 201210
  • 收稿日期:2018-03-01 修回日期:2018-04-07 出版日期:2018-09-18 发布日期:2018-07-19
  • 通讯作者: 杨波
  • 基金资助:

    国家自然科学基金(21603142);上海浦江人才计划(16PJ1406800);上海高校青年东方学者(QD2016049).

Influence of surface strain on activity and selectivity of Pd-based catalysts for the hydrogenation of acetylene: A DFT study

Ping Wang, Bo Yang   

  1. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
  • Received:2018-03-01 Revised:2018-04-07 Online:2018-09-18 Published:2018-07-19
  • Contact: 10.1016/S1872-2067(18)63081-5
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (21603142), the Shanghai Pujiang Program (16PJ1406800) and the Shanghai Young Eastern Scholar Program (QD2016049).

摘要:

在石油催化裂解过程中,除了生成乙烯、丙烯及丁烯等烯烃,还会产生部分炔烃.目前工业上通常采用炔烃选择性加氢转化为对应的单烯烃,以除去其中炔烃.由于产品烯烃中的炔烃等杂质含量需极低,这就对用于加氢催化剂的活性和选择性提出了很高的要求,即催化剂需要选择性吸附炔烃并加氢,而不损失其中的烯烃.经过前期大量的基础研究工作,目前工业中炔烃选择性加氢应用最广泛的催化剂是负载型钯基催化剂.然而,单独的钯金属选择性并不理想,因而对其选择性以及活性进行调控成为了当前关注的研究课题.
本文采用密度泛函理论计算结合微观反应动力学模拟手段,研究了钯金属表面应力存在条件下的活性与选择性,以及形成次表层物种的可能性和形成后的活性与选择性.研究发现,改变钯金属的晶格参数与表面应力,反应物、表面反应中间体和产物的吸附能都会产生相应的变化,且吸附能与晶格参数的变化存在线性关系,晶格参数越大,吸附越强.利用表面反应过渡态能量与初始态能量之间的线性关系,相应的乙炔加氢生成乙烯的反应速率可以通过微观反应动力学模拟得到.结果显示,不同晶格参数的钯催化剂催化乙炔加氢生成乙烯的反应活性位于相应火山型曲线的强吸附侧,即减弱乙炔和氢的吸附强度可提高乙烯的生成速率.在此基础上,本文研究了不同表面应力的钯催化剂在次表面吸附不同覆盖度碳原子和氢原子的情况,发现晶格参数越大越有利于碳原子和氢原子在次表面的吸附.同时,研究发现在次表面碳掺杂的条件下,不同表面应力条件下的钯催化剂的活性均有所增强.此外,由于乙烯在所有研究的钯催化剂表面脱附比进一步加氢容易,因而乙烯都可以选择性生成.

关键词: 表面应力, 钯, 乙炔加氢, 选择性, 活性, 次表面, 密度泛函理论, 微观反应动力学模拟

Abstract:

The effects of surface strain and subsurface promoters, which are both important factors in heterogeneous catalysis, on catalytic selectivity and activity of Pd are examined in this study by considering the selective hydrogenation of acetylene as an example. Combined density functional theory calculations and microkinetic modeling reveal that the selectivity and activity of the Pd catalyst for acetylene hydrogenation can both be substantially influenced by the effects of Pd lattice strain variation and subsurface carbon species formation on the adsorption properties of the reactants and products. It is found that the adsorption energies of the reactants and products are, in general, linearly scaled with the lattice strain for both pristine and subsurface carbon atom-modified Pd(111) surfaces, except for the adsorption of C2H2 over Pd(111)-C. The activity for ethylene formation typically corresponds to the region of strong reactants adsorption in the volcano curve; such an effect of lattice strain and the presence of subsurface promoters can improve the activity of the catalyst through the weakening of the adsorption of reactants. The activity and selectivity for Pd(111)-C are always higher than those for the pristine Pd(111) surfaces with respect to ethylene formation. Based on the results obtained, Pd-based catalysts with shrinking lattice constants are suggested as good candidates for the selective hydrogenation of acetylene. A similar approach can be used to facilitate the future design of novel heterogeneous catalysts.

Key words: Surface strain, Pd, Acetylene hydrogenation, Selectivity, Activity, Subsurface, Density functional theory, Microkinetic modelling