催化学报 ›› 2018, Vol. 39 ›› Issue (12): 1951-1959.DOI: 10.1016/S1872-2067(18)63155-9

• 论文 • 上一篇    下一篇

石墨烯包覆无定形CoSnO3纳米复合材料用作锂空气电池阴极催化剂的性能

岳光辉a, 刘建蒂a, 韩江涛a, 覃东慧a, 陈强b, 邵剑雄c   

  1. a 厦门大学材料科学与工程系, 福建厦门 361005;
    b 厦门大学电子科学系, 福建厦门 361005;
    c 兰州大学核科学与技术学院, 甘肃兰州 730000
  • 收稿日期:2018-06-30 修回日期:2018-08-16 出版日期:2018-12-18 发布日期:2018-09-26
  • 通讯作者: 岳光辉, 陈强
  • 基金资助:

    国家自然科学基金(11405144);中央高校基本科研业务费专项资金(20720180081).

Amorphous CoSnO3@rGO nanocomposite as an efficient cathode catalyst for long-life Li-O2 batteries

Guanghui Yuea, Jiandi Liua, Jiangtao Hana, Donghui Qina, Qiang Chenb, Jianxiong Shaoc   

  1. a Department of Materials Science and Engineering, Xiamen University, Xiamen 361005, Fujian, China;
    b Department of Electronic Science, Xiamen University, Xiamen 361005, Fujian, China;
    c School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Guansu, China
  • Received:2018-06-30 Revised:2018-08-16 Online:2018-12-18 Published:2018-09-26
  • Contact: 10.1016/S1872-2067(18)63155-9
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (11405144), and the Fundamental Research Funds for the Central Universities (20720180081).

摘要:

随着科技不断进步和人口快速增长,化石能源日渐枯竭,同时环境问题日趋严重,开发新型绿色、环保、高效的能源迫在眉睫.锂-空气电池以其质量轻、成本低、环境友好和能量密度高的优点引起人们广泛研究.但对于锂-空气电池仍然需要解决诸如较差的材料和电解液的稳定性、较低的循环寿命以及过高的充放电过电势等难题.而开发高效正极催化剂材料是解决这些问题的关键技术之一.其中,过渡金属氧化物以其地壳丰度高、成本低和性能优异等优点成为正极催化剂材料的研究热点.
本文采用化学法成功合成了CoSnO3纳米盒子,对其进行复合后制得CoSnO3@rGO纳米复合材料,并系统研究了CoSnO3及其纳米复合材料作为锂-空气电池正极催化剂的电化学性能.结果表明,通过石墨烯与CoSnO3进行复合得到的CoSnO3@rGO纳米复合材料的比表面积从原来的104.3 m2 g-1增加到195.8 m2 g-1.作为阴极催化剂材料,CoSnO3@rGO纳米复合材料的充放电过电位比CoSnO3在100和500 mA g-1充放电电流密度下分别降低了20和60 mV.在限制容量为1000 mAh g-1、充放电电流密度为200 mA g-1时,CoSnO3@rGO纳米复合材料作为阴极催化剂材料可以使该锂-空气电池稳定循环130圈,比单纯的CoSnO3纳米盒子作为阴极催化剂材料多循环了25圈.
CoSnO3@rGO纳米复合材料的优异性能归功于石墨烯良好的导电性能以及快速的电子和离子传输能力,同时由于其巨大的比表面积增大了电解液和催化剂材料活性位点的接触面积,为放电产物Li2O2的形成和分解提供了场所.CoSnO3@rGO的OER催化活性和循环稳定性在CoSnO3基础上均得到提升.

关键词: 无定形CoSnO3纳米盒子, 纳米复合物, 锂-空气电池, 阴极催化剂

Abstract:

An amorphous CoSnO3@rGO nanocomposite fabricated using a surfactant-assisted assembly method combined with thermal treatment served as a catalyst for non-aqueous lithium-oxygen (Li-O2) batteries. In contrast to the specific surface area of the bare CoSnO3 nanoboxes (104.3 m2 g-1), the specific surface area of the CoSnO3@rGO nanocomposite increased to approximately 195.8 m2 g-1 and the electronic conductivity also improved. The increased specific surface area provided more space for the deposition of Li2O2, while the improved electronic conductivity accelerated the decomposition of Li2O2. Compared to bare CoSnO3, the overpotential reduced by approximately 20 and 60 mV at current densities of 100 and 500 mA g-1 when CoSnO3@rGO was used as the catalyst. A Li-O2 battery using a CoSnO3@rGO nanocomposite as the cathode catalyst cycled indicated a superior cyclic stability of approximately 130 cycles at a current density of 200 mA g-1 with a limited capacity of 1000 mAh g-1, which is 25 cycles more than that of the bare amorphous CoSnO3 nanoboxes.

Key words: Amorphous CoSnO3 nanoboxe, Nanocomposite, Li-O2 battery, Cathode catalyst