催化学报 ›› 2019, Vol. 40 ›› Issue (9): 1282-1297.DOI: 10.1016/S1872-2067(19)63361-9

• 综述 • 上一篇    下一篇

钴、镍、铁基氧族化合物用作染料敏化太阳能电池对电极的研究进展

卫朋坤a, 陈学a, 吴桂竹a, 李晶a, 杨杨a, 郝泽伟a, 张肖b, 李静c, 刘璐a   

  1. a 南开大学环境科学与工程学院, 天津市城市生态环境修复与污染防治重点实验室, 天津 300350;
    b 中国民航大学飞机防火与应急研究所, 天津 300300;
    c 南开大学外国语学院, 天津 300350
  • 收稿日期:2018-12-27 出版日期:2019-09-18 发布日期:2019-07-06
  • 通讯作者: 张肖, 李静, 刘璐
  • 基金资助:
    国家自然科学基金杰出青年科学基金(21425729);国家水污染防治专项科技项目(2017ZX07107002);中国博士后科学基金(2018M640209),天津市科技支撑重点项目(18YFZCSF00500).

Recent advances in cobalt-, nickel-, and iron-based chalcogen compounds as counter electrodes in dye-sensitized solar cells

Pengkun Weia, Xue Chena, Guizhu Wua, Jing Lia, Yang Yanga, Zeiwei Haoa, Xiao Zhangb, Jing Lic, Lu Liua   

  1. a Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
    b Center for Aircraft Fire and Emergency, Civil Aviation University of China, Tianjin 300300, China;
    c General English Department Foreign Language College, Nankai University, Tianjin 300350, China
  • Received:2018-12-27 Online:2019-09-18 Published:2019-07-06
  • Contact: S1872-2067(19)63361-9
  • Supported by:
    This work was supported by the National Science Fund for Distinguished Young Scholars (21425729) from the National Natural Science Foundation of China, the National Special S&T Project on Water Pollution Control and Treatment (2017ZX07107002),China Postdoctoral Science Foundation (2018M640209) and the Tianjin Science and Technology Support Key Projects (18YFZCSF00500).

摘要: 随着能源危机的加剧,开发清洁、高效、可持续的太阳能已成为全球研究热点.基于光伏收集转化太阳能为电能的技术提供了一种极具潜力的解决方案.此外,得益于弱光响应力、环境友好及低制造成本等,染料敏化太阳能电池(DSSC)被认为是最具有应用前景的光伏技术之一.通常,DSSC由纳米半导体氧化物(光阳极)、对电极、染料分子和氧化还原电解质组成.各组分的主要作用如下:染料分子作为敏化剂,吸收太阳光,将激发的电子注入半导体氧化物的导带中,使染料处于氧化状态;注入电子从半导体转移到导电玻璃和外部电路;对电极中的电活性物质从外部电路中收集电子并转移到电解液中,实现电解液中氧化还原物质的催化还原;电解液负责转移电子并还原氧化态的染料,使染料转化为基态实现再生.
作为DSSC的主要组成部分,对电极对提高DSSC的光伏性能起着至关重要的作用.本文综述了近年来国内外关于钴、镍、铁等金属氧族化合物作为对电极材料的研究进展和性能,并对其氧化物、硫化物和硒化物的电催化活性进行了比较.总结了提高该类对电极材料电催化活性的各种优化方法.性能优化主要集中在结构调控、碳材料复合和元素掺杂等方面的研究,用以增强电荷转移能力,获得良好的活性位点,调节其电子结构,最终提高光伏性能.
通过调研发现,前期的研究主要是探索钴、镍、铁等金属的单金属化合物的可用性,在后续的研究中,其双金属合金及其化合物越来越显示出替代贵金属铂的应用潜力.通过多种优化方法的设计与实践发现,含有钴、镍、铁金属元素的化合物作为对电极材料的电催化性能已超过标准的铂电极.虽然DSSC的研究已经取得了较为深入的进展,但各类型的对电极材料在DSSC中都存在一些不足和问题.对比发现,金属氧化物在电极中的电化学阻抗较大,本征电催化性能不如硫化物和硒化物.此外,与金属硫化物相比,金属硒化物具有更好的导电性和催化活性,这得益于更小的电负性金属丰度.硒化物虽然具有优良的性质,但在合成过程中需要严格控制反应条件.此外,其电催化还原电解质分子的催化机理尚不清楚.特别是元素掺杂和双金属的根本性效应需要进一步研究,这也将成为对电极材料的重要研究方向.

关键词: 对电极, 染料敏化太阳能电池, 氧族化合物, 钴, 镍,

Abstract: The electroactive materials used in the counter electrode (CE) are of great concern as they influence the photovoltaic performances of dye-sensitized solar cells. The main functions of CE materials are collecting electrons from the external circuit and transferring them to the electrolyte and realizing the catalytic reduction of the redox species (I3- or Co3+) present in the electrolyte. The research hotspot of CE materials is seeking functional materials that display high efficiency, low cost, and good electrochemical stability and can substitute the benchmark platinum electrode. Chalcogen compounds of cobalt, nickel, and iron have been widely applied as CE materials and exhibit excellent electrocatalytic performances owing to their unique electrical properties, similar energies of adsorption of I atoms as platinum, excellent catalytic activities, and good chemical stabilities. In this review, we trace the developments and performances of chalcogen compounds of iron, cobalt, and nickel as CE materials and present the latest research directions for improving the electrocatalytic performances. We then highlight the optimization strategies for further improving their performances, such as fabrication of architectures, regulation of the components, synthesis of composites containing carbon materials, and elemental doping.

Key words: Counter electrode, Dye-sensitized solar cell, Chalcogen compound, Cobalt, Nickel, Iron