催化学报 ›› 2019, Vol. 40 ›› Issue (9): 1311-1323.DOI: 10.1016/S1872-2067(19)63321-8

• 综述 • 上一篇    下一篇

原子层沉积技术:催化剂合成与修饰新工艺

张洪波a, Christopher L. Marshallb   

  1. a 南开大学材料科学与工程学院, 国家新材料研究院, 天津 300350, 中国;
    b 阿贡国家实验室化学科学与工程分部, 莱蒙特, 伊利诺伊州, 美国
  • 收稿日期:2019-01-05 出版日期:2019-09-18 发布日期:2019-07-06
  • 通讯作者: 张洪波, Christopher L. Marshall
  • 基金资助:
    美国能源部(DE-AC-02-06CH11357).

Atomic layer deposition: Catalytic preparation and modification technique for the next generation

Hongbo Zhanga, Christopher L. Marshallb   

  1. a School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China;
    b Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA
  • Received:2019-01-05 Online:2019-09-18 Published:2019-07-06
  • Contact: S1872-2067(19)63321-8
  • Supported by:
    This paper is dedicated to the 100th anniversary of Nankai University, which was founded in 1919 by educators Mr. Xiu Yan and Mr. Boling Zhang.

摘要: 近年来,原子层沉积(ALD)技术以其精准的材料合成及修饰特性(精确到原子尺度)吸引了广泛关注.特别地,ALD技术在新型纳米催化材料研发方面表现优异.这集中体现在对催化反应稳定性的提高和对催化反应选择性的调变,如本文中列举的Pd/Al2O3和Cu-chromite体系等都很好地展示了ALD技术对不同催化反应体系的调控作用.目前,已有一系列相关的综述性文章发表,从不同侧面讨论了ALD技术对催化反应的影响.但是,有关ALD技术的作用机理尚未见明确表述,尤其关于ALD纳米层如何在原子和分子水平上调变催化剂纳米粒子,从而影响催化反应稳定性与选择性等方面的讨论尚不充分.
本综述简要介绍了ALD技术的由来和发展历程;归纳了前人采用X射线吸收光谱(XAFS),程序升温还原/氧化(TPR/TPO)、CO化学吸附(FTIR)和X射线小角衍射(SAXS)等方法研究ALD技术对被覆盖的催化剂纳米颗粒氧化还原特性及表面活性位组成影响的实验结果,包括借助ALD手段调控催化剂的孔分布;列举了应用该手段提高催化反应稳定性、调变催化反应选择性的实例;讨论了ALD特有的"自终止"("self-limiting")特性;总结了ALD纳米层通过电子效应和结构效应等形式对催化反应产生的影响.本文还介绍了部分有关借助ALD技术构建新型纳米反应体系的研究进展,包括构建新型纳米限域体系("nano-bowl")并将该限域体系应用于选择性(催化转化特定尺寸的反应底物)光催化转化反应过程,以及构建双中心纳米催化体系(Pt-dimer,在预先吸附的单中心Pt催化剂周围再次吸附单分散的Pt),同时还讨论了如何利用ALD技术构建多元、多界面催化反应体系.

关键词: 原子层沉积, 催化剂修饰, 催化剂制备, 氧化还原特性, 平整表面, 台阶位

Abstract: Atomic layer deposition (ALD) attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level. There are several reported review papers published recently discussing this technique in catalysis. However, the mechanism on how the deposited materials improve the catalyst stability and tune the reaction selectivity is still unclear. Herein, catalytic systems created via ALD on stepwise preparation and/or modification under self-limiting reaction conditions are summarized. The effects of deposited materials in terms of electronic/geometry modification over the catalytic nanoparticles (NPs) are discussed. These effects explain the mechanism of the catalytic stability improvement and the selectivity modification. The unique properties of ALD for designing new catalytic systems are further investigated for building up photocatalytic reaction nanobowls, tandem catalyst and bi-active-component metallic catalytic systems.

Key words: Atomic layer deposition, Catalyst modification, Catalyst preparation, Redox properties, Terrace site, Step site